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Summary 

In the last years the depletion of fossil fuels and the increasing of the world energy demand, has 

foster the interest for renewable energies, including biomass for energy production. The use of 

biomass as a renewable energy source in industrial applications has increased during the last decade 

and now it is considered one of the most promising renewable sources. 

The large amount of biomass available, that potentially has an energy content that could be 

usefully exploited, is often disposed of as waste (in some case aggravating environmental 

problems). It is of primary interest to understand how to exploit its energy content. As it is well 

known, the thermo-chemical conversion of biomass to energy can be carried out by means of 

different processes: 

- combustion, 

- pyrolysis, 

- gasification. 

The gasification process, on which this project focuses, basically consists of some physical and 

chemical reactions to obtain the conversion from a primary fuel (liquid or solid) to a new kind of 

fuel in the gas phase (called syngas). The feedstock is heated in absence of oxygen or in sub-

stoichiometric conditions; this turns the biomass into a hydrogen rich gas which can be transported 

and burned in different locations. The possible gasifying agents are: steam, air (or pure oxygen) or a 

mix of them. The products emanating from the gasification process mainly comprise a mixture of 

the permanent gases CO, CO2, H2 and CH4, steam, char, tars and ash.  

Recently, gasification of biomass for production of synthesis gas has gained renewed attention. 

The reason is that the synthesis gas may be utilized in downstream process for production of motor 

fuels, or in gas turbine and fuel cells for energy production. For example, if the raw synthesis gas is 

sufficiently cleaned from tars it may be used for production of dimethylether (DME) or Fischer –

Trops fuels which may be utilized as fuel in diesel engines (reducing the dependence on fossil 

energy sources in the motor fuel segment), or if the hydrogen concentration is remarkable it can 

feed fuel cells. However, as mentioned above, the raw synthesis gas needs to be cleaned from tars 

before it may be upgraded to other commodities.  

At present the research on biomass gasification follows two routes. One focuses on the 

optimization of the syngas production by means of a proper design of the plant (i.e. fixed or 

fludized bed, downdraft or up-draft configuration) and the right choices of the parameters values 

(reaction temperature, type and amount of gasifying agent), the other one focuses on the research of 

economic and efficient catalysts for tar cracking. 



 XIX 

The aim of the present project is to evaluate the potentiality of the steam gasification process for 

energy production in small scale applications, linking the two research lines. In a first phase a steam 

gasification plant has been built and tested. Then, thanks to the collaboration with the University of 

Stockholm, different types of catalysts (dolomite and iron) have been tested. The dolomite has been 

chosen as the best solution for the steam gasification plant developed in the first part of the project. 

Thus a cleaning section for the tar cracking has been added to the steam gasifier. Finally the syngas 

suitability for a fuel cell has been evaluated and some preliminary tests coupling the gasifier with a 

SOFCs stack have been run. 

The present thesis is divided in the following chapters: 

o In chapter 1 the basic concepts of biomass gasification, gas cleaning and fuel utilization are 

summarized;  

o In chapter 2 a literature review on the operative existing plants at pilot, small and lab scale 

and on the modelling approach at the biomass gasification field is reported. Then the 

influence of the main gasification parameters has been investigated; 

o Chapter 3 reports the experimental activity performed in the small scale fixed bed gasifier 

that has been developed within this project. The final goal is to evaluate the syngas 

suitability for solid oxide fuel cells stack. During the experimental activity the gasifier has 

been equipped with a hot gas cleaning system developed in collaboration with the 

University of Stockholm. 

o In chapter 4 the comparison between the experimental data and the outputs of a 

thermodynamic stoichiometric equilibrium model has been reported. In a second moment, a 

non stoichiometric equilibrium model has been built to be tuned up with the experimental 

data; a better agreement has been reached between the predicted syngas composition and the 

measured one.  

o In chapter 5 the tests run at KTH, Stockholm, in a fluidized bed gasifier to test the 

efficiency in tar cracking of different types of catalysts have been reported. A comparison 

between the experimental gas composition and the equilibrium model predictions is also 

shown.  

o Finally, in chapter 6 some conclusion and outlooks for the future have been drawn. 
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Chapter 1  

 

Overview 

 

1.1 Introduction 

Until the end of 1800, when in the industrialized countries the fossil fuels era began, biomass was 

the first supplier of the world’s energy demand. From the coming of the era of fossil fuels the 

biomass as energy source started to be faced out, slowly at first and then more quickly, even if 

biomass continued to be a major source of energy in most of the developing countries. 

After the coming of fossil fuels there were two occasions when the biomass went back to be an 

important source of energy. One was in the 1970s in the occasion of the First Oil Shock when many 

governments again considered biomass as a viable, domestic energy resource with the capacity of 

decreasing the dependence on the fossil fuels and on the countries suppliers. From the First Oil 

Crisis, a slow but continuous increasing of the percentage of energy produced by biomass was 

registered. For example in U.S. at the end of 1970s the contribution of biomass to the global energy 

demand was around 2%, and by 1990 it was increased to 3.2%. The same trend was registered in 

Canada and for other industrialized countries [Klass, 1998]. The second occasion was during the 

1980s when a renewed interest toward biomass was seen. This time the main reason was a global 

concern for the depletion of fossil fuels that are running out quite quickly. Additionally, since 15 

years, an increasing attention of the population for the environment has been seen (greenhouse 

effect, level of pollutants in the atmosphere, overheating of the earth have become common 

arguments of discussion). This fact has driven from one side the governments to start policies to 

support the production of energy from clean and renewable sources and, from the other, has led the 

research centres and companies to study for improving the efficiency of traditional system (for heat 

and electricity production) and to look for new technologies for the exploitation of renewable 

resources. 

1.2 Biomass framework 

Biomass is a terms that has different tone according to the field of discussion. For ecology and 

biological application, biomass indicates the total amount of living material in a given habitat, 

population, or sample. Instead, for the energy and chemical industry, biomass also refers to the 

organic material on Earth that has stored sunlight in the form of chemical energy. The word 

“Biomass” includes wood, wood waste, straw, manure, sugar cane, and many other by-products 

from a variety of agricultural processes. Currently many people advocate the use of biomass for 
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energy as it is readily available, whereas fossil fuels, such as petroleum, coal, or natural gas, take 

millions of years to form in the Earth and are finite and subject to depletion as they are consumed.    

The biomass is considered a “renewable carbon resource” but this is not completely true. Many 

reactions, reversible or not, occur in a way that the carbon is stored in different form, including 

fossil carbon. Which source of carbon can be considered renewable or not is just a matter of time. 

Fossil fuels could be also a renewable source if the society could wait million of years, 

unfortunately it cannot. In our society, biomasses are one of the major fixed-carbon containing 

materials that renew themselves in a time short enough to make them continuously available. In 

figure 1.1, the main paths of production and transformation of the biomass are schematized. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Main paths of biomass transformation 

1.3 Biomass properties 

1.3.1 Chemical properties 

The content of certain chemical elements is important for utilization of the biomass itself. The 

ultimate analyses consist on the measurements of the content of the chemical elements, such as 

Carbon (C), Hydrogen (H), Oxygen (O), Sulphur (S) and Nitrogen (N),usually expressed in mass % 

on dry material (wt% dry) or in mass % on dry and ash free material (wt% daf) or in mass % as 

received material (wt% ar). According to the type of biomass, the elemental composition can be 

significantly different and the ash content can vary remarkable. On average, the typical values for 

wood or woody residues are: Carbon 40-50%, Hydrogen 6%, Oxygen below 40%, Nitrogen in most 

of the case below 1% and Sulphur around 0.5%. In table 1 the composition of common biomasses 
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are reported. The moisture content is also measured by drying the raw material at 105°C. The ash 

content, which also varies considerably, is measured by combustion of raw material at 550°C. At 

chemical level, biomass is mainly composed by cellulose (40-80% in mass), lignin (25-35% in 

mass) and hemi cellulose (15-30% in mass).  

Table 1.1 Ultimate analysis of different biomasses in % dry matter [Hall, 1987] 

Residue Ash C H O N S 

Black oak 1.34 49.0 6.0 43.5 0.15 0.02 

Douglas-fir 0.10 50.6 6.2 43.0 0.06 0.02 

Red alder 0.41 49.6 6.1 43.8 0.13 0.07 

Cotton gin trash 14.7 42.8 5.1 35.4 1.53 0.55 

Grape pomace 4.85 54.9 5.8 32.1 2.09 0.21 

Peach pits 0.05 49.1 6.3 43.5 0.48 0.02 

Rice hulls 21.0 38.3 4.4 35.5 0.83 0.06 

Wheat straw 6.53 48.5 5.5 39.1 0.28 0.05 

Rice straw 17.40 41.4 5.1 39.9 0.67 0.13 

Sugarcane Bagasse 3.90 47.0 6.1 42.7 0.30 0.10 

Coconut shell 1.80 51.1 5.7 41.0 0.35 0.10 

Potato Stalks 12.92 42.3 5.2 37.2 1.10 0.21 

Lignite 9 70 5.2 22.8 1.99 - 

Bituminous Coal 10 80.9 6.1 9.6 1.55 1.88 

1.3.2 Proximate analysis 

As other solid fuels, biomass can be subjected to a proximate analysis that indicates the water, ash, 

volatiles and fixed carbon content. The ash is usually expressed in weight % on dry bases or in 

weight % as received material, the water in weight % on wet bases and the total amount of volatile 

is expressed in weight % on dry material or as received material or on dry and ash free material. 

The fixed carbon is calculated as the remaining part according to the formulas reported in table 1.2.  

Table 1.2 Fixed carbon calculation [Phyllis] 

Dry Fixed C = 100- ash(dry)- volatiles(dry) 

Daf (Dry Ash Free material) Fixed C = 100-Volatiles (daf) 

Ar (As Received) Fixed C = 100-ash (ar)-water content – volatiles (ar)   

A typical plant residue has about 80% of volatiles and 20% of fixed carbon. This means that if the 

residue is treated by means of a pyrolysis process, about 20% of the initial biomass will result in 

charcoal, while the 80% will turn in gas and tar. As examples, the proximate analyses performed on 

different type of biomass are reported in table 1.3. 
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Table 1.3 Proximate analysis and HHV of some biomass fuels, weight % dry basis [Hall, 1987] 

 Volatile 
matter 

Fixed 
carbon 

Ash 
Volatile/fixed  

carbon ratio 

HHV 
(MJkg-1) 

Duoglas-fir wood 87.3 12.6 0.1 6.9 20.37 

Douglas-fir bark 73.6 25.9 0.5 2.8 21.93 

Western hemlock wood 87.0 12.7 0.3 6.8 19.89 

Western hemlock bark 73.9 24.3 0.8 3.0 21.98 

Red alder wood 87.1 12.5 0.4 7.0 19.30 

Red alder wood 77.3 19.7 3.0 3.9 19.44 

Black oak wood 85.6 13.0 1.4 6.6 18.65 

Black oak bark 81.0 16.9 2.1 4.8 17.09 

Cotton gin trash 75.4 15.4 9.2 4.9 15.58 

Grape pomace 74.4 21.4 4.2 3.5 21.81 

Olive pits 80.0 16.9 3.1 4.7 19.37 

Peach pits 79.1 19.8 1.1 4.0 19.42 

Rice hulls 63.6 15.8 20.6 4.0 14.89 

Walnut shell 81.2 17.4 1.4 4.7 19.51 

Pensylvania 
bitumionous coal  6.2 79.4 11.9 0.08 34.9 

Wyoming 
subbituminous coal 40.7 54.4 4.9 0.75 23.3 

1.3.3 Combustion characteristics 

The heating value of a substance is the heat released during the combustion of 1kg of it, assuming 

that the combustion products are cooled down to the initial temperature. This value is called High 

Heating Value (HHV) and it is measured directly in a calorific bomb. The HHV is corrected with 

the analysis of the water content of the combustible gases and this new value is called Low Heating 

Value (LHV). On average, the heating value of biomasses ranges from 14 to 19 MJ Nm-3. Several 

formulas to estimate the heating value knowing the ultimate analyses have been proposed by 

different authors, since 1924. Here a correlation (1.1) to estimate the heating value for solid liquid 

and gaseous fuels is reported [Channiwala, 2002]. When the ultimate analysis is not available, the 

heating value can be estimated with good accuracy starting from proximate analysis (1.2) [Parik, 

2005]. 
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834.003180.07009.03137.03675.1)/( 2 =⋅+⋅+⋅+−= ROHCkgMJHHV              (1.1)  

( ) 617.0R  /0078.01559.03536.0)/( 2 =−+= kgMJAshVMFCkgMJHHV        (1.2)  

Where C, H, O are the % of Carbon, Hydrogen and Oxygen content in weight % on dry material 

(wt% dry) , FC is the fixed carbon, VM is the volatile matter.  

The diagram proposed by [Van Krevelen, 1993] that relates together the LHV, the H/C and O/C 

ratio, is reported in figure 1.2. As can be noticed from the values listed in table 1.1, the composition 

of the woody biomass is approximately the same. There is a remarkable difference is between 

biomass and coal. The low values of H/C and O/C in coal assure a high heating value. Biomass has 

a lower C concentration and consequently lower heating value respect to coal, but from the other 

side has a high reactivity. This aspect, together with the wide availability of the biomass in the 

world, makes the biomass suitable for thermal treatment such as pyrolysis or gasification. 

 

 

Figure 1.2 Van Krevelen diagram for different dry solid fuel [Van Krevelen, 1993] 

1.4 Gasification  

1.4.1 Biomass conversion processes 

The conversion process to extract energy from the biomass has to be chosen considering the 

characteristic and the amount of the available biomass. Additionally the subsequent energy-

converting device and its requirements have to be considered. The conversion processes can be 

divided in three main groups:  
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� Physical process such as drying and dewatering; 

� Thermal processes such as combustion, pyrolysis, liquefaction and gasification; 

� Biochemical conversion processes such as microbial conversion, biochemical liquefaction. 

In figure 1.3 an overview of the conversion processes and possible applications to different energy 

conversion device is drawn.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Biomass conversion technologies and possible end-use applications 

1.4.2 Thermochemical conversion 

The main thermochemical processes are combustion, pyrolysis and gasification. The products of all 

those processes are divided in volatile fraction, consisting of gases, vapours and tar components, 

and a solid residue rich in carbon. The main differences among the processes are the quantity of 

oxidant used (if any) and the amount of the different sub products produced. 

Combustion is the first process discovered by mankind to produce heat and it is still the most used 

process to extract the energy stored in the chemical bounds of biomass. Theoretically it consist on 

the complete oxidation of the considered fuel, it is an exothermal process and it can be applied to 

every sort of biomass, even if the process efficiency drastically decreases when the moisture content 

is above 50%. The combustion process can be applied at both small scale (i.e. for domestic 

application) and at large scale (i.e. incineration and power plant, up to 3000 MW). Direct 

combustion for simple heating is a very low efficient process even if higher efficiency can be 
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reached when the combustion runs in large-scale plant or systems for heat recovery are adopted. 

The net conversion efficiency of traditional power plant ranges between 20 and 40%, according to 

the plant design and the biomass type. Mixture of coal and biomass are particularly attractive 

because a higher efficiency can be reached [Mckendry, 2002]. According to [Demirbas, 2009], 4 

billions m3 of wood are annually combusted by the world’s population to meet daily energy needs 

for heating and cooking. Even if various technologies for thermo-chemical conversion of biomass 

(i.e gasification, pyrolysis) have been developed during the last years, direct combustion is still 

responsible for over 97% of the world’s energy production from biomass. The parameter that 

characterizes the combustion is the “excess of air”, which is the value of the ratio between the air 

added during the process and the air required for stoichiometric combustion (always greater then 

one). During the combustion, the sub-processes such as Drying, Devolatilization, Reduction and 

Oxidation occur simultaneously. The chemical energy is entirely converted in sensible heat of 

exhaust gases consisting of steam, carbon dioxide and nitrogen. The produced heat can be converted 

to mechanical work via, for example, steam cycle or Stirling engines.  

It is not known exactly when pyrolysis process was discovered and started to be applied, but it was 

the beginning of a new period for the biomass utilization. Pyrolysis process consists on thermal 

degradation of the biomass in inert atmosphere. The temperature usually can vary between 200°C 

and 700°C. The products are a mixture of combustible gas, liquid and solid. The percentage of each 

sub-product, as well as their composition depends on the process parameters chosen: temperature, 

pressure, fuel size and composition. The pyrolysis of biomass includes endothermic and exothermic 

reactions. It is usually an endothermic process for temperature below 450°C and exothermic above. 

Anyway, the heat required for the process is generally provided by the oxidation of undesired 

products.  

Gasification is defined a partial oxidation of the chosen fuel, since the oxidizing agent is added in 

substoichiometric condition. The resulting gas mixture, called syngas, is itself a fuel since it is 

composed, besides of carbon dioxide and nitrogen, by combustible gases. The advantage of 

gasification is the conversion of a solid fuel in a new fuel in gas phase that can be used in second 

use apparatus. This process is potentially more efficiency than direct combustion and many types of 

biomass can be treated and upgraded in this way. 

It is important to remind that gasification process is known since the end of 18th century. At that 

time coal and peat were used to power gasification plant. The first “Gazogene” was built in the 

town of Sarre-Union (Alsace, France) with the purpose of converting solid fuel (such as wood, coal 

or peat) into gas to supply internal combustion engines initially fed with gasoline [McKendry, 

2002]. The coal gasification process was mainly used to produce coke (70% of the coal treated) but 

the combustible gas yield during the process (30% of the initial coal), became famous as “town 

gas”, because was sold to municipalities and consumers for lighting and cooking purpose. During 

the XIX century the town gas was replaced by electricity and natural gas but, since 1878, gasifiers 
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were successfully coupled with engine for power generation. From 1900 to 1920 many gasifier-

engine systems were sold for power and electricity generation and in 1930 began the development 

of small gasifier for automotive and portable purposes. For example, in 1940, in Sweden, 90% of 

the vehicles had been converted to producer gas drive and the fuel used was wood and residual 

charcoal. Following World War II the interest in the gasification process gradually disappeared due 

to the gasoline and diesel available at cheap cost. Gasification became of interest again during the 

oil crisis of the 1970s, while over the past 25 years not much effort has been put in developing this 

process, because of the competition with natural gas and oil derivatives [Turare,1996 ; 

Srivastava,1993]. 

 

 

 

 

 

 

 

 

Figure 1.4 Cars powered by internal combustion engine with wood gasifier. From the left, Alfa Romeo 
1750, Fiat 1100 modified by Baldini in 1946, bus used for public transport in Milan during 1930-40s. 

The subject of this project is the biomass gasification process. Up to know we have briefly seen that 

coal gasification was widely practiced 100 years ago, even if the process has not been studied from 

the scientific point of view (reactions involved, characteristic parameters and so on), a remarkable 

experience was acquired during the XIX century in gasifier construction and operation. The 

scientific approach of the gasification process has started recently thanks to the renewed attention to 

this process which represents a promising technology to extract energy from the biomass. The 

chemistry involved in the biomass gasification process is very similar to the coal one that was 

considering as a starting point to study the process. However, biomass is more reactive than most 

coals, since it contains more volatile matter (70 to 90% for wood compared to 30 to 45% for typical 

coals) and thus, gasification can occur under less severe operating conditions. In the next 

paragraphs the gasification process and technologies available will be briefly summarized. 
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1.4.3 Gasification process outline 

Gasification turns low or null value feedstock in a new and marketable fuel. From the chemical side 

the gasification process is, as said before, a partial oxidation of the fuel. The whole process can be 

divided in four sub-processes: 

� Pyrolysis or devolatilization step: the fuel is thermally degraded in gas, condensable 

compounds and char; 

� The gas and tar yield are themselves subjected to thermal degradation; 

� Char is gasified by carbon dioxide or steam; 

� The sub products (gas, tars and char) are partially oxidized. 

In Figure 1.5 the entire process is schematize. The final step is the combustion of the gasification 

products with the complete oxidation of the gas, tar and char in carbon dioxide and water.  

 

 

 

 

 

 

 

 

Figure 1.5 Schematic presentation of the gasification process 

The pyrolysis step is slightly endothermic and the mass percentage of the initial feedstock, which 

turns in gaseous or volatiles compounds, can vary between 75 to 90% according to the temperature 

reached in this stage. The gas and tar composition depend on the gasification temperature and on 

the amount of oxidizing media fed.  
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The reactor, due to the endothermic characteristic of the process, need to be heated up. This can be 

done in several ways such as burning part of the combustible gas or char produced in situ or 

separately or combusting some of the feed material. 

To understand the final syngas composition the main reactions involved in the gasification process 

are summarized below. The oxidation zone is characterized by the heterogeneous chemical 

reactions of combustion (1.3) and partial oxidation (1.4). 

 10

f22 molkJ5.393HCOOC
−−=∆→+    (1.3) 

 10

f2 molkJ5.110HCOO21C
−−=∆→+   (1.4) 

These two reactions are exothermic and can provide the heat necessary for the endothermic 

reactions occurring in the drying, pyrolysis and reduction zones (i.e. autothermal process). 

The water steam can be produced during the drying and pyrolysis of the feedstock or introduced as 

a gasifying agent or even generated by the reacts with the solid carbon, according to the following 

reversible water gas reactions (1.5 and 1.6). These two equations together with the Boudouard 

equation (1.7) are the main endothermic reduction reactions involved in the process. These 

reactions increase the concentration of carbon monoxide and hydrogen in the produced gas, 

especially at higher temperatures and lower pressures. 

 

 10
22 3.131 −=∆+→+ molkJHHCOOHC  (1.5) 

                           10
222 2.902 −=∆+→+ molkJHHCOOHC  (1.6) 

 10
2 4.1722 −=∆→+ molkJHCOCOC  (1.7) 

 

Several other reduction mechanisms occur during the gasification process; some of the most 
important reactions are listed below. In particular it is worth to underline the importance of the 
water gas shift equation (1.8) and the reactions for methane production (1.9 - 1.12) 

 10
222 1.41 −−=∆+→+ molkJHHCOOHCO  (1.8) 

                     10
242 3.24722 −−=∆+→+ molkJHCOCHHCO  (1.9) 

 10
242 1.2063 −−=∆+→+ molkJHOHCHHCO  (1.10) 

  0 1
2 2 4 24 2 165.0.1CO H CH H O H kJ mol−+ → + ∆ = −  (1.11) 

 10
42 8.742 −−=∆→+ molkJHCHHC f  (1.12) 
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Even if the process runs in substoichiometric conditions a fraction of carbon monoxide and of 

hydrogen can be completely oxidize in carbon dioxide and water respectively (equation 1.13 and 

1.14).  

 10
222 9.28521 molkJHOHOH f −=∆→+  (1.13) 

 10
22 9.28321 molkJHCOOCO −=∆→+  (1.14) 

These reactions are usually not desired, because from one side they generate thermal energy which 

gives a contribution in sustaining the conversion process but from the other side they cause a 

reduction in the syngas heating value.  

The water gas and water gas shift reactions are the ones which determine to a large extent the final 

gas composition. The equilibrium of these (and also others) reactions is strongly influenced by the 

temperature, as can be clearly seen in figure 1.6. 

 

 

 

 

 

 

 

Figure 1.6 The equilibrium constant of reaction (1.7), (1.8), (1.10), (1.12) is reported [Klass, 1998] 

Although it is possible to list the most important reactions that occur during a gasification process, 

in practice the different sub-phases of the process run almost simultaneously and is not possible to 

control the process with good accuracy. Anyway it is possible to estimate the final gas composition, 

considering the values of the characteristic parameters of the process and under the hypothesis that 

the reaction time is long enough to reach almost the equilibrium condition. The characteristic 

parameters are: 

� Fuel consumption, moisture and composition; 

� Temperature and pressure; 

� Type and quantity of gasifying agent fed;  
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� Superficial velocity and heart load; 

� Gas heating value; 

� Gas flow rate and gas production; 

� Efficiency. 

It is worth to brief describe the most important parameters among the ones listed aboveThe reaction 

temperature is one of the most important parameter for the overall gasification efficiency. It acts on 

the carbon monoxide and hydrogen fractions since higher temperatures favour the endothermic 

reactions. Furthermore if the temperature is above 1100°C the tar conversion is achieved by thermal 

cracking, even if the typical gasification temperature ranges between 700°C and 900°C. Higher 

temperatures are possible but difficult to reach operatively. From several experimental results, it can 

be seen that the temperature influences the gas composition until 1100°C. Above this value the 

different gas fractions reach stable level as can be seen in many experimental works, i.e. [Li, 2004], 

[Luo, 2009], [Franco, 2003]. As an example, some experimental results are reported in figure 1.7. 

The pressure has a minor role on the syngas composition unless going at higher pressure values 

[Valin, 2010], [van Diepen & Moulijn, 1998].  

 

Figure 1.7 Biomass gasification process: Gas composition versus different temperature at feeding rate of 
0.44kg h-1, air 0.5Nm3 h-1 and steam rate 2.2kg h-1 (left) [Franco,2003] and feeding rate of 0.3kg h-1and steam 
to carbon 1.43 (right) [Luo,2009] 

The amount and the type of gasifying agent are also very important. Air, steam or pure oxygen can 

be used for this purpose. Air is the cheapest and most used gasifying agent, but the heating value of 

the produced gas is quite low because of the high nitrogen content. Oxygen is the one with the 

highest reactivity but is less employed due to the high cost and safety problems. Steam is a good 

compromise even if the heat needed for the steam generation has to be provided in someway. The 

gasifying agent is usually quantified defining its mass ratio versus the stoichiometric amount or 

versus the fuel (biomass). The most common parameters used are: Equivalent Ratio (ER) for partial 

oxidation and Steam to Carbon ratio (SC) for steam gasification. The ER parameter is defined as 
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the ratio between the oxygen fed to the gasifier and the stoichiometric quantity of oxygen needed 

for the complete oxidation of the feedstock. The Steam to Carbon ratio (SC) quantifies the ratio 

between the supplied steam and the carbon fraction present in the feedstock. Typical ER values for 

biomass range between 0.2-0.3, while for steam gasification SC vary between 1 and 3.  The ER and 

SC values are chosen according to the desired syngas composition. For example, increasing ER 

value, the CO2 and H2O content obviously raise, the syngas heating value decreases, as well as tar 

amount. In figure 1.8, the influence of ER and SC is shown.  

The residence time is an important parameter that acts on the final gas quality and composition. 

In addition, tar conversion improves increasing the reaction time. The minimum residence time to 

reach a conversion over 98% has been found of 0.02 kg h Nm-3.  

The gas heating value of the produced gas is defined as the heat released during a complete 

combustion process. It is measured in units of energy per amount of gas, and it is usually referred to 

the normal gas volume (at 0°C, and 1bar) and therefore, expressed in J Nm-3. 
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Figure 1.8 Characterization of the syngas as a function of the air ratio (ER) on the left [Li, 2004]; and as 
function of S/B (Steam to biomass) on the right (gasification temperature 1073 K) [Franco, 2003]. 

Usually the heating value can be expressed in two different ways: 

� HHV (Higher Heating Value) which is the maximum energy released during complete 

oxidation of the fuel, including the thermal energy that can be recovered by condensing and 

cooling the products down to the initial temperature (before starting the combustion). 

� LHV (Lower Heating Value): the net energy released during complete oxidation of the fuel, 

without the energy recovery, due to product condensation (i.e. latent heat). 

The syngas heating value together with the produced gas flow rate represent the thermal power at 

the gasifier outlet and are significant in determining the gasifier efficiency.  

The efficiency of a gasification reactor is defined as the energy content of the syngas divided by the 

energy content of the feedstock; typical attainable efficiency values are in the range of 70-80%. Is 
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obviously important to know the fuel consumption for the overall process efficiency. This quantity, 

measured directly, or by a mass balance, is usually expressed as unit mass per time (kgbiomass h
-1), or 

per generated energy (kgbiomass kW-1). 

1.4.3 Gasification technologies overview 

The primary aim of the gasification technology is the efficient conversion of the energy stored in 

the biomass into the produced syngas. The gas composition and the impurity level depend on the 

gasification agent and the process conditions, which are influenced by the reactor design.  

The design and building of gasification reactor is practice since the 1800s, thus a considerable 

experience has been developed in more than 150 years. As result, several reactors design is 

available at small and large scale. The gasifiers can be classified according to their design in: 

� fixed bed; 

� fluidized bed; 

� Entrained flow; 

� Twin bed. 

the main difference is the gas/solid flow pattern which determines the sequence of the sub-processes 

of gasification.  

The Fixed bed rectors have been widely used for coal gasification since more than 150 years ago. 

The main advantage of the fixed bed reactors is the simplicity and the high operative temperature, 

usually around 1000°C, but at the same time the high temperature can cause several corrosion 

problems and the produced gas has high tar content and low heating value. The operative fixed bed 

gasifiers, at commercial scale, are very few. The main problem is the high tar concentration, which 

is caused by the non uniform temperature profile in the gasification zone. A considerable cleaning 

section has to be foreseen if this reactor is adopted. The fixed bed gasifiers can be classified in 

Updraft, Downdraft or Cross Flow according to the direction of the airflow.  

In the Updraft gasifier the feedstock is introduced at the top of the gasifier and the gasifying agent, 

at the bottom through a grate. The biomass moves downwards running through drying, 

devolatilization, reduction and finally oxidation. During this process, volatiles compounds are 

realized: partly condense on the biomass and partly leaves the gasifier with the gas. The gasification 

process occurs in the lower part of the reactor and the gas produced leaves the reactor in the upper 

part. In this way the hot gas are cooled down passing through the biomass that is contemporary 

dried. The syngas leaves the gasifier at 200-300°C and, due to the low temperature, the gasifier 

efficiency is high but the tar production is also considerable (between 10 and 150 g Nm-3 

[Hasler,1999]). The particulate matter is usually low due to the filtration effect of the wood material 
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bed thorough which the producer gas passes on its way to the exit. Commonly air is used in the 

updraft reactor, thus the gas heating value is around 5-6 MJ Nm-3.  

In the downdraft gasifier the feed and the gasifying media move in the same direction. The biomass 

is introduced at the top of the reactor; instead, the air enters just above the heart of the gasifier. The 

produced gas leaves the system after passing through the “hot zone” and this lead to lower tar 

concentration because the tar produced during the pyrolysis and gasification processes is thermal 

cracked. On the contrary, the overall energy efficiency is low since the gas exits at about 800°C and 

the particulate concentration is higher then in the updraft gasifier.  

In figure 1.9 the scheme of an updraft and a downdraft fixed bed gasifiers with their typical vertical 

temperature profiles have been reported. 

 

 

 

 

 

 

 

Figure 1.9 Updraft and downdraft gasifiers. Adapted from [McKendry, 2002] 

In the cross-flow gasifiers the feed moves downwards while the air is introduced from one side. The 

advantage of this system is that it can work at small scale (under 10kWel), but has a very low tar 

conversion. In this system the feed moves downwards while the air is introduced from one side and 

from the other the gas leaves the reactor at the same level. In this way the hot 

combustion/gasification zone is located  around the entrance of the air where the temperature 

reaches  also 1500°C, while the drying and pyrolysis zone are located higher up in the reactor. The 

gas leaves the vessel at 900°C, thus the energy efficiency is quite low. 

Fluidized bed gasifier was originally developed for large scale coal gasification, and its main 

advantage is the uniform temperature in the gasification zone. This is achieved preparing the 

feedstock in small and uniform particle size and adding to the bed an inert material to improve the 

heat exchanges. The bed is fluidized with air or oxygen ensuring, in this way, intimate mixing of the 

biomass with the hot produced gas. The result is the production of a syngas with higher heating 

value and less tar content, respect to the fixed bed system. This can be also due to the frequent 
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addition of a catalyst together with the inert bed material. The fluidized bed gasifiers have two main 

configurations: circulating fluidized bed (CFB) or bubbling bed (BFB) (see figure 1.10). Both can 

work either at atmospheric pressure or pressurized.  

The BFB gasifier is a well established technology. The reactor is divided in two parts: the fluidized 

bed is located in the lower part, and the upper part is called freeboard. The flow velocity of the 

gasifying agent is adjusted to avoid that the particles bed is transported out of the reactor. For this 

reason the ash particles are mainly blown out of the fluidized bed. A cyclone is placed after the 

reactor to clean the raw gas from particulate material. The outgoing gas has a temperature of 850-

900°C, which allows a cold gas efficiency of 70-85%. [Hasler, 1999]). If air is used as gasifying 

agent the gas heating value is between 3.6-5.9 MJ Nm-3. The BFB is sensible towards the size and 

the geometry of the wood particles since these properties determine the fluid dynamic behavior of 

the feed. 

 

 

 

 

 

 

 

Figure 1.10 Fluidized bed gasifiers: bubbling fluidized bed (on the left) and circulating fluidized bed (on 
the right) [Olofsson, 2005]. 

The CFB has no clear separation between the fluidized bed and the freeboard. The flow velocity is 

considerable higher then in BFB. As a consequence, the mixing of bed material and biomass 

particles reach fully isothermal conditions, but a higher percentage of particulate matter and inert 

material is blown out of the gasifier.  

To solve the problem the solid material collected in the cyclone is re-circulate in the gasifier. With 

this system a higher char conversion can be achieved. The syngas produced using CFB gasifier has 

lower tar content and higher heating value. 

Two other types of fluidized bed gasifier can be worth to describe briefly. The Double fluidized bed 

which basically couple two CFB in series. In the first reactor the pyrolysis process occur, and in the 

second one air or steam is added for the gasification process. The first gasifier is heated by means of 

hot sand circulating from the second reactor. The entrained flow gasifier (EF) is commonly used for 
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coal. This reactor has no inert material; it operates at high temperature (1000-1200°C) and high 

pressure (25-60bar) and it is used at big scale (>100MWth). The feedstock has to be prepared in 

small fuel particles and it is fed directly in the gasification chamber. Air or pure oxygen is used as 

oxidizing agent and, due to the high temperature, very low tar is present in the produced gas. The 

conversion is close to 100%. However the experience in using this gasifier for biomass instead of 

coal is poor. In table 1.4 and 1.5 some general consideration on the different plants and on the 

typical composition of the syngas produced are summarized.  

Table 1.4 Operating conditions of fluidized and entrained flow gasifier [Knoef, 2005]  

 Downdraft Updraft BFB CFB EF 

Gasification 
temperature (°C) 

700-1200 700-900 <900 <900 1450 

Tars Poor High Medium Medium Very poor 

Control ☺ ☺ ☺ � � � 

Suitable scale 
(MWth) 

<5 <20 10-100 20-100 >100 

Feedstock 
preparation 

Very critical Critical Less critical Less critical 
Only fines 
particles 

 

Table 1.5 Characteristics of the syngas produced by different gasifiers [Hasler, 1999], [Beenackers, 1999] 

Process Gas composition LHV     
(MJ Nm-3) 

Tar       
(g Nm-3) 

Particles 
(g Nm-3)  H2 CO CO2 CH4 N2 

Fixed bed Updraft 15-21 10-22 11-13 1-5 37-63 4-5.6 0.01-6 0.1-8 

Fixe bed Downdraft 10-14 15-20 8-10 2-3 53-65 3.7-5.1 10-150 0.1-3 

BFB 15-22 13-15 13-15 2-4 44-57 3.6-5.9 2-30 8-100 

CFB 17-36 36-51 7-15 0.1-1 0-39 114-18 1-20 8-100 

EF 29-40 39-45 18-20 0.1-1 0.1-9 8.8-9.3 - - 

1.5 Gas cleaning 

The term gas processing comprises the combination of gas cleaning and conditioning. Gas cleaning 

includes the required steps for tar removal, while gas conditioning includes the processes involved 

in the preparation of the syngas yield into a fuel suitable for the subsequent energy generation 

apparatus.  

The produced gas derived from biomass gasification of solid fuels normally contains CO2, H2, CO, 

CH4, H2O, N2 and in addition to the main components organic and inorganic impurities as well as 

solid matter.  In details, besides the permanent gases, can be found: 

� Sulphide compounds (mainly H2S and COS, if the fuel used includes sulphur); 

� Nitrogen compounds (NH3 HCN,NOx, generated from the N contained in the fuel); 
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� Tar; 

� Halogen compounds (ex. HCl); 

� Particulate matter; 

� Alkali and metallic compounds. 

According to the final use of the gas produced, it can be necessary to clean it from any or all these 

impurities. Thus, the gas cleaning session is usually thought and built for the specific requirement 

of the subsequent energy production system. In short, the most common technologies for the 

abatement of the different impurities are summarized below.  

1.5.1 Tar removal 

“Tar” has been operationally defined in gasification field as the material in the product stream that 

is condensable at a temperature below 450°C, in the gasifier or in downstream processing steps or 

conversion devices; more precisely, in a recent EU/IEA/DOE meeting, Tar has been defined as 

“organic compounds with molecular weight higher than benzene”. Several studies have interested 

the tar formation, composition and degradation. Besides the gasifying agent concentration which 

acts on the quantity of tar produced, a clear relationship also exists between the process temperature 

and the tar composition [Elliot, 1998]. In table 1.6 the tar compounds generated at different 

temperature are listed. 

Table 1.6 Chemical compounds in biomass tar 

Conventional Flash 
Pyrolysis (450-500°C) 

High-Temperature Flash 
Pyrolysis (600-650°C) 

Conventional Steam 
Gasification (700-800°C) 

High Temperature 
Steam Gasification 

(900-1000°C) 

Acids 

Aldehydes 

Ketones 

Furans 

Alcohols 

Complex Oxygenates 

Phenols 

Guiacols 

Syringols 

Complex Phenols 

Benzenes 

Phenols 

Catechols 

Naphthalenes 

Biphenyls 

Phenanthrenes 

Benzofuranes 

Benzaldehydes 

Naphthalenes 

Acenaphthylenes 

Fluorens 

Phenanthrenes 

Phenols 

Naphthofurans 

Benzanthracenes 

Naphthalene 

Acenaphthylene 

Phenanthrene 

Flouranthene 

Pyrene 

Acephenanthrylene 

Benzanthracenes 

Benzopyrenes 

226 MW PAHs 

276 MW PAHs 

Evens and Milne [Evens,1997] suggested the use of a classification of pyrolysis products as 

primary, secondary and tertiary according to the formation temperature. Four major classes were 

identified as a result of gas-phases thermal cracking reactions: 

� Primary products: characterized by cellulose-derived products such as levoglucosan, 

hydroxyacetaldehyde and furfurals; analogous hemicellulose-derived products; and lignin-

derived methoxyphenols; 
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� Secondary products: characterized by phenolic and olefins; 

� Alkali tertiary products: includes methyl derivatives of aromatics, such as methyl 

acenaphthylene, methylnaphtahlene, toluene and indene; 

� Condensed tertiary products: includes the PAH series without substituents: benzene, 

naphthalene, acenaphthylene, anthracene/phenanthrene, pyrene.  

As shown in figure 1.11 the primary and tertiary products are mutually exclusive; the primary 

products are destroyed before the tertiary products appear [Toman, 2001]. Usually the gasification 

process runs between 700°C and 900°C; nevertheless the tertiary compounds are predominant, 

especially benzene, naphthalene, phenantrene and pyrene. 
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Figure 1.11 Classification of tar compounds according to the formation temperature 

The technologies available for tars removal are based on different principles. The most diffused 

technology is based on physical tar removal by means of wet scrubbers (water or oil based) or 

electrostatic precipitators. The first ones works below 65°C, while the second can receive gas at 

temperature up to 150°C. With these systems, the tar load in the cleaned gas can range from 10 

mgNm-3 (with oil based wet scrubber) to 40 mgNm-3. The main disadvantage is the heat loss due to 

the low operative temperature of these technologies.  

Thermal tar decomposition requires high temperature, from 900 to 1200°C according to the species 

present in the tar. This temperature can be reached heating electrically special surfaces up to 

1200°C, or through the partial oxidation of the gas, using oxygen. In the second case, very low 

oxygen to fuel ratio is necessary for tar conversion, thus a few of the gas energy content is lost, but 

the oxygen is expensive. The disadvantages of thermal processes are the incomplete tar 

decomposition and the energy losses, even if the energy content of the tar is preserved in the 

producer gas in form of sensible heat or heating value of the tar decomposition products. 

Finally, the catalytic tars removal, allow the tar degradation at temperatures between 800-900°C. 

The catalyst can be placed inside the reactor, mixed with the inert bed, or in an external vessel. The 
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main advantage of the “in situ decomposition” is the possibility of tar decomposition while the 

gasification process runs, In fixed bed reactors, the contact between gas and catalyst is not enough 

to reach a good tar conversion, instead in fluidized bed, the catalyst shows fast deactivation, due to 

the attrition with the solid material. The best solution is to remove tars in a separate reactor, even if 

this required a separate heating system and higher costs. The catalysts active in tar decomposition 

are many and with different costs. Dolomite, olivine, calcites and zeolites are cheap and show a 

good efficiency in tar cracking. Metallic catalysts, such as Mo, Ni, Co, Pt, allow a most complete 

decomposition of tar and ammonia but they are quite expensive and the long-term efficiency has not 

been well demonstrated yet. 

1.5.2 Particles removal 

The particulate matter in the gas can cause erosion and blocking in the downstream equipment of 

the gasifier. Additionally, particles are subjected to emission limits. Therefore, the particles removal 

section is almost compulsory in every cleaning system for gas yield from biomass gasification. The 

most common technologies for particulate removal are: wet scrubbers which have a maximum 

operative temperature below 100°C and for which gas cooling is compulsory. Electrostatic 

precipitators, classified in wet or dry according to their removal system. The wet precipitators have 

a maximum operative temperature of 65°C, instead the dry ones can tolerate a gas temperature up to 

500°C. Cyclones, which are quite simple system, have an operative temperature limited only by the 

construction material and remove large quantities of large particles. Usually the fluidized beds are 

equipped with a cyclone due to the high quantity of particles that is blown out of the gasifier. The 

last systems are barrier filters; the gas pass through a special barrier and the particulate matter stops 

on it. These system need to be periodically cleaned according to the particles concentration in the 

treated gas. The barrier filters are chosen according to the type of particulate matters and the gas 

temperature (bag filters, packed bed filters or rigid barrier filters). 

1.5.3 Alkali and impurities removal 

Alkali metals are usually removed cooling the gas below 600°C, and then the solid particles 

generated are removed by means of particle filtration. A recent research has shown that bauxite has 

a good efficiency at temperature between 650 and 750°C as alkali absorber [Cummer, 2002].  

The removal of impurities in trace such as N, S, Cl is also required for most of the end-uses 

applications. The Chlorine in the biomass is usually converted in HCl during the gasification 

process, and its concentration in the gas depends on the Cl concentration in the feedstock. The HCl 

removal is typically achieved with web scrubbers or adsorption on active material such as 

CaO/MgO [McKendry, 2002]. The nitrogen concentration in the biomass is converted mainly in 

NH3. If air is used as gasifying agent, the N2 content is considered as inert and it has no contribution 

on the ammonia formation. If the syngas is combusted in gas engines or turbine the ammonia is 

converted in NOx during the combustion at high temperature. NOx emissions are subjected to 

restrictive limits, thus it is important to remove NH3 to avoid their formation. Ammonia can be 

removed by wet scrubber or by catalytic decomposition. The first technology is well known, but the 
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gas has to be cooled down to 50°C. The latter technology is more recent and still not used 

commercially. It has been seen that the catalyst used for tar removal have also a good efficiency in 

ammonia removal (99% at 900°C for dolomite, nickel or iron-based catalyst). On the contrary, a 

recent research has shown that, if the syngas is produced to be fed in high temperature Fuel Cell, the 

ammonia removal is not necessary, since it is well converted inside the fuel cell with a very low 

NOx emission [Wojcik, 2003]. 

1.5.4 Sulphur abetment 

The sulphur content in the feedstock is usually below 0.01%. During the combustion of the syngas 

the sulphurous compounds are oxides in SOx which can be easily removed to respect the emission 

limit.  If the gas is produced to be burned in gas engines or turbines the prior sulphur removal is 

uncommon. Actually, the most advanced research on gasification process is trying to feed a fuel 

cells with syngas produced from biomass. Fuel cells are very sensible to H2S which remarkable 

reduce the fuel cell efficiency and can also cause permanent damage. Wet scrubbers are efficient in 

sulphur removal but the process is quite complex and requires the gas cooling. For hot gas cleaning 

adsorption on zinc oxides (maximum temperature 350-450°C) shows good efficiency. Recently, the 

sulphurous compounds adsorption on metal-oxides (i.e. magnesium, lantanium, iron) has been 

tested and promising results have been achieved up to 500°C. Active carbon can also be used for 

sulphur removal even if the high steam content in the gas may decrease the efficiency [Cal, 2000]. 

1.6 Syngas utilization 

The gas produced via gasification process can be used in several applications for power generation, 

for heat and/or combined heat and power applications and for the generation of liquid fuels and 

chemicals products. Several progresses have been done in the last 20 years in this field, but the 

efficiency and the tar removal are still a problem for most of the applications. 

One of the most common applications is co-firing coal and gas from gasification of biomass in 

existing coal power plants. The plants can tolerate up to 10% of gas without any modification of the 

coal boiler; indeed, the critical problem in co-firing is the effect of the biomass ash on the quality of 

the boiler flying and bottom ash. The application of the flying and bottom ash in construction and 

cement production often sets the specifications for the amount and type of biomass that can be co-

fired. Examples of biomass co-firing plants are the AMER 85MWth circulating fluidized bed (CFB) 

gasifier in the Essent power plant in Geertruidenberg (The Netherlands) and the foster Wheeler 

CFB gasifier in Lahti (Finland) and Ruien (Electrabel power plant,Belgium). 

The syngas produced is also used for power generation in combined cycle of heat and power (CHP) 

production. In these systems the gas yield is burned on a gas engine. Opportunely modified gas 

engine can works without troubles with gas of different quality, even those with calorific values 

around 5-6 MJ Nm-3. The output energy is one-third electric energy and two-third heat energy. The 

most important aspect to improve the performance of CHP plants is the removal of tar from the 

product gas. Higher is the tar and aerosol concentration in the gas more frequently revision and 
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repairs have to be done to the system; this leads to a decrease of revenues and to higher 

investments, as some equipment will be installed double to avoid the standstills. Furthermore, 

removal of tar components can become very expensive as some tar components show poisoning 

behavior in biologic wastewater treatment systems. The few successful systems are the ones in 

Gussing (Austria) and Harboore (Denmark) and they are neither cheap nor simple. 

To produce electricity on larger scale the IGCC (integrated gasification combined cycles) are 

preferred instead of CHP; in the IGCC the gas is fired on a gas turbine. Gas turbines requires a 

pressurized feed gas, thus the syngas has to be pressurized or it should be carried out from the 

gasification equipment at the pressure of the turbine (5-20 bar). The second solution is preferred as 

in that case only dedusting of the gas and cooling to the turbine inside temperature (400-500°C) is 

required, while in the other route the gas has to be completely cooled and cleaned to allow the 

compression. By the way, the major drawback for pressurized gasification is the cost related to the 

electricity consumption to pressurize the inert gas. 

Fuel Cells can achieve, potentially, higher electrical efficiency than the simple combustion systems 

or gas engines; a fuel cell downstream a gasifier functioning as the combustion room for a micro 

gas turbine, is a combination with high electric efficiency; in a simpler system, the fuel cell is 

connected to a gasifier to both have a high electric efficiency and a high overall efficiency. Anyway 

the application of gas yield from biomass gasification to fuel cells is still in its early development. A 

fuel cell burns H2, but also CO and CH4 according to the type of cells, and produces electricity 

directly through electrochemical reactions. The use of methane as fuel provides effective cooling of 

the fuel cell (due to the endothermicity of the reforming reaction) which should otherwise be done 

in a way that increases the costs and decreases the overall efficiency. 

The acceptable levels for the concentrations of impurities and the required main gas composition 

could vary according to the final utilization of the gas (summarized in table 1.7). 

Table 1.7 Syngas required for different applications 

Second use system Required gas 

Power-Combined cycle Product gas 

Power-CHP gas engine Product gas, low tar content 

Power-CHP fuel cell Product gas, low hydrocarbon & organic content 

SNG Product gas, nitrogen free, high methane content 

Liquid Fuel synthesis Product gas, nitrogen-free 

Chemical synthesis Product gas, nitrogen-free 

Hydrogen production Product gas, nitrogen free 

Ammonia production Product gas, containing nitrogen 
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1.6.1 Fuel cells 

Since the main goal of this project is to verify the syngas suitability from biomass gasification for 

SOFC fuel cells, a brief description of the main characteristics of these systems is here done.  

Fuel cells are electrochemical power generation systems that convert the chemical energy stored in 

a fuel into an electric current. The electricity is generated inside the cells through reactions between 

a fuel and an oxidant, stroked by an electrolyte.  All the fuel cell types consist of two electrodes (of 

porous material) separated by an electrolyte. The electrodes act as catalytic environments for the 

cell reactions, while the electrolyte transports the produced ions from two generic reactions, closing 

the electric circuit in the cell. Fuel cells differ from conventional electrochemical cell batteries 

because the reactants flow continuously into the cell from an external source (thermodynamically is 

an open system). Instead the traditional batteries have the chemical energy stored in the battery 

itself (closed system). Fuel cells can operate continuously as long as the necessary reactant and 

oxidant flows are maintained. The occurring electrochemical reactions are exothermic and, for that 

reason, a cooling system is usually needed to keep the operation temperature in a desired range. 

Here the main fuel cells types are presented, classified according to the function of the utilized 

electrolyte and characterized by their operation parameters (table 3.1). 

Table 1.8 Main fuel cells type and operative parameters 

Fuel cell type Temperature Pressure Cell Power 

AFC (Alkaline Fuel Cells) < 80 °C 4 bar 60-70% 10-100 kW 

PEM FC (Proton Exchange Membrane Fuel 50-220 °C atmospheric 50-70% 100W- 

PAFC (Phosphoric Acid Fuel Cells) 150-200°C 8bar 55% < 10 MW 

MCFC (Molten Carbonate Fuel Cells) 600-700°C 3.5bar 55% 100 MW 

SOFC (Solid Oxide Fuel Cells) 800-1000°C atmospheric 60-65% < 100 MW 

DMFC (Direct Methanol Fuel Cells) 90-120°C atmospheric 20-30% 100mW-1kW 

RMFC (Reformed Methanol Fuel Cells) 250-300°C atmospheric 50-60% 5W- 100kW 

The use of synthesis gas (in particular from coal gasification) in fuel cells has been investigated 

since the 1960s [Shoko, 2006]. Among the different types of fuel cells the SOFC and the MCFC are 

particularly attractive for the use of synthesis gas from biomass conversion, since they can directly 

utilize both hydrogen and carbon monoxide and can accept higher levels of contaminant (NH3, H2S, 

HCl, particulates, tar). 

The molten-carbonate fuel cells (MCFCs) are high temperature fuel cells (working temperature 

above 600°C) characterized by an electrolyte composed of a molten carbonate salt mixture 

suspended on a porous, chemically inert ceramic matrix of beta-alumina solid electrolyte. Because 

of the high working temperature, non-precious metal can be used as catalysts, reducing costs. 

Molten carbonate fuel cells  do not required an external reformer to convert more fuels in hydrogen 

because the fuel is converted to hydrogen within the fuel cell by internal reforming; additionally 
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they are not prone to poisoning by CO or CO2 —they can even use carbon oxides as fuel— making 

them more attractive for fuelling with gases made from coal.  The carbon monoxide is internal 

oxidizes through the water gas shift reaction producing hydrogen and increasing the overall 

efficiency. The global efficiency is around 45%, even if, theoretically, efficiencies of 65 % can be 

reached.  

The MCFC electrochemical reactions are: 

Anode: −− ++→+ eCOOHCOH 222
2

32                  (1.1) 

Cathode: 2
322

1
2 2 −− →++ COeOCO                 (1.2) 

Total:            EnergyOHOH 222
1

2 +→+                   (1.3) 

It is possible to notice the presence of carbon dioxide among the reacting species. Due to the CO2 

concentrations required at the cathode, usually it is necessary to circulate the anodic exhaust (that is 

a CO2 rich effluent) to the cathode. The reformed hydrocarbons or the biomass and coal synthesis 

gases contain significant concentrations of carbon dioxide and this make the synthesis gas 

particularly suitable for feeding such fuel cells.  

MCFC typical performances are: current intensity of 160 A/cm2, cell voltages of 0.75 V, pressure 

3.5 bar and temperature 650°C. Given the high temperatures and pressures of the outlet streams, it 

seems reasonable to foresee an integration of the system with a micro gas turbine, capable to 

recover the inlet gas compression work and to generate an electric power by means of a coupled 

alternator. The primary disadvantage of current MCFC technology is durability. The high 

temperatures at which these cells operate and the corrosive electrolyte used accelerate component 

breakdown and corrosion, decreasing cell life. Typical applications are plants for stationary power 

generation, between 0.1-10MW sizes. 

A solid oxid fuel cell (SOFC) works at high temperature(800-1100°) and, as for MCFC cells, the 

noble catalyst can be eliminated. The advantages of this type of fuel cells are the high efficiency, the 

long-term stability and the fuel flexibility. The main disadvantage is the high operative temperature 

which results in a long start up time and in the compulsory heating of the fuel entering in the cell. 

The SOFC cell is characterized by a solid oxide or ceramic electrolyte, often stabilized by means of 

zirconium. The electrodes (usually nickel and zirconium as anode, and lanthanum manganate as 

cathode) are manufactured by means of thin films deposition on a base support and act as catalysts. 

The cell reactions are: 

Anode:            −− +→+ eOHOH 22
2

2               (1.4) 

Cathode: 2
22

1 2 −− →+ OeO                          (1.5) 

Total:            EnergyOHOH 222
1

2 +→+                           (1.6) 

The main advantages of these cells are the high flexibility to different fuels. They can work with 

both H2 and CO which are converted in the anode side. The SOFCs are not vulnerable to carbon 

monoxide that is reformed inside the cell. Because of the high operative temperatures, light 
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hydrocarbon fuels, such as methane, propane and butane can be also internally reformed within the 

anode. SOFCs can also be fueled by externally reforming heavier hydrocarbons, such as gasoline, 

diesel or biofuels. Such reformates are mixtures of hydrogen, carbon monoxide, carbon dioxide, 

steam and methane, formed by reacting the hydrocarbon fuels with air or steam in a device 

upstream of the SOFC anode. SOFC power systems can increase efficiency by using the heat given 

off by the exothermic electrochemical oxidation within the fuel cell for endothermic steam 

reforming process. However, they are very sensible to sulphur poisoning, so the sulphur must be 

removed before entering the cell using adsorbent beds or other means. 

SOFC proposed configurations are tubular, planar and monolithic. Typical tubular stack 

performances are 300 mA cm-2 of current intensity and cell voltage of 0.6 V at atmospheric pressure 

and 1000°C temperature. 

Nowadays there are pilot scale plants of 100 e 200 kW size. The advantages of this technology are 

the possibility of CHP production (thermal recovery option), the wide range of usable fuel and 

interesting global conversion efficiency (greater than 45%, for some authors can reach 70%). The 

main drawbacks are related from one side to the costs of the materials and of the manufacturing 

technologies and from the other to the low stability of the components mainly stressed by the high 

temperatures.
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Chapter 2 

 

Biomass gasification: state of the art 

 

2.1 Experimental activity in Europe 

The development and installation of gasification plants has remarkable grown during the last 15 

years. Gasification for heat production is a competitive technology and hundred of gasifiers are 

installed in many developing countries but also in Europe and USA for heat production. These 

plants are fixed bed reactors, downdraft or updraft, which can work with several types of feedstock 

(i.e. rice husks, rice straw, bark, sawdust, olive waste). The feedstock is pyrolysed or gasified with 

air and the produced gas is burned in a second chamber for heat production. The gas yield is 

characterized by low heating value and high tar content.  

The idea of power generation from the gasifier plants was born few years after the development of 

Otto and Diesel engines. Several plants for power generation have been built at demonstrative scale 

and even if now the technology seems to be ready for commercialization, the number of plants that 

successfully works is small, compared to the numbers of plant built. Moreover the size of the plant 

is often above 1MW. Absolutely, it is possible to say that there is a number of operative gasification 

plants that have demonstrate that the gasification technology can be really used for heat and 

electricity production at large scale, but it is still difficult to find successful experience of plants at 

small scale (200-400 kW). This is the future direction of the gasification field: small plant that can 

be used in remote or rural area for heat and energy production.  

In the first part of this chapter a review of the operative plants at small and large scale is done. In 

the second part an overview of the gasifier at lab or pilot scale is also reported. 

2.2 Operative gasification plant at large scale  

The plants shown in figure 2.1(and briefly describe below) are considered as successfully 

experience since they are operative under commercial conditions and, at least, for more then 6000 

hours (or for 2000 hours per year) [Knoef, 2005]. The size of the considered plants is between 1 and 

20 MWe. 

Gussing, Austria: this plant is a CHP plant at demonstrative scale, in operation since 2002. It is a 

twin fluidized bed reactor with steam as gasifying agent. The gas yield is cooled and cleaned and 

then burned in a gas engine. Thanks to this plant, the whole city is supplied with green electricity 

and heat from biomass [Hofbauer, 2007]. 
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Figure 2.1 Successfully operative gasification plants in Europe 

Grevè di Chianti, Italy: the plant was designed to be fed with RDF (Refuse derived fuel) in pellets 

form. The system consists of a TPS-designed gasifier, fluidized with air at atmospheric pressure, the 

power production stage and the cleaning section to respect the emission limits required. The 

boiler/combustor is built to accept the raw gas from the gasifier. The electric power output is up to 

6.7 MW [Granatstein, 2003]. 

Enemora, Spain: the gasification plant (developed by Energia Natural de Mora and EQTEC Iberia 

s.r.l) located in Spain it is a fluidized bed gasifier. Air is used as gasifying agent and almond shell as 

feedstock. Two engines are fuelled with a mixture of diesel and gas produced via gasification 

process. The plant was planed to produce from 250 to 750KWel. The global efficiency is reported to 

be 22%.  

Lahti, Finland: A CFB co-firing gasification plant has been built by Foster Wheeler Energia in 

1998. Air is used as fluidizing and gasifying agent. The operative temperature is between 800-

1000°C and the syngas produced is burned in a boiler mixed with coal or natural gas. Different 

feedstocks are suitable for the plant: (i.e. wood, plastic, RDF, paper) and moisture content up to 

50% can be accepted. The stability of the boiler steam cycle is also good. 

 Rudersdorf, Germany: A CFB has been incorporated into a cement production process to provide 

energy for the cement production process. The CFB built is composed by a reactor, an integral 
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recycle cyclone and a seal pot. The gasifying agent is air and it is fed in two points as primary air to 

fluidize the bed and secondary air above the feed point. The gasification process takes place at 

temperature between 800-950°C, the bed material is distributed almost uniform in the reactor and 

this allows a high carbon conversion rate. Up to four different biomasses can be fed at the same 

time through four hoppers, but the fuel has to be prepared in size of 25-50 mm.  

Varnamo, Sweden: in 1990 a pressurized CFB gasification plant was built by Sydkraft. It was 

mothballed in 2000 when the demonstration program was over. In 2004 it was bought by VVBGC 

(Vaxio Varnamo biomass gasification center) and upgraded and restarted in 2007. The first gasifier 

was air-blow, but after the rebuilt it can work also with steam or oxygen as gasifying media. The 

syngas produced is partially burned in a gas turbine to generate electricity, and the heat recovered 

from the hot flue gas of the gas turbine is used for steam generation. Then the super-heated steam is 

supplied to a steam turbine and more electricity is produced [VVBGC, 2010].  

Freiberg, Germany: The CHOREN Company developed, since 1997-98, the so called Carbo-V 

process. In The Carbo-V gasifier the process is divided in three steps: low temperature gasification, 

high temperature gasification and endothermic entrained flow gasification. In the first the biomass 

is predried with process energy (waste heat) to a moisture content of 15 - 20 %. It is then carbonized 

in the LTP section (low-temperature pyrolysis) through partial oxidation with a gasification agent 

(air and/or oxygen) at temperatures between 400 °C and 500 °C. In the second stage the carbonized 

gas is post-oxidized in the high-temperature gasifier's combustion chamber using air and/or oxygen. 

The heat released by oxidation heats the carbonization gas to temperatures higher than the fusion 

temperature of the input fuels' ash. In the last step the char is blown into the hot combustion gases 

in the lower section of the endothermic entrained flow gasifier. The carbon reacts with the carbon 

dioxide and steam to form CO and H2. Because of these endothermic reactions, the gas temperature 

is instantly reduced to approx. 900°C. This "chemical quenching" allows highly efficient production 

of a tar-free raw gas. The syngas yield is used for heat and power generation, for methanol 

production and for BtL (Biomass to Liquid) generation through Fischer-Tropsch process [Choren, 

2010]. 

DTU, Denmark: The technical university of Denmark is studying biomass gasification since the late 

80’.During 20 years, several fixed bed gasifier have been tested. In 2002 DTU decided to build a 

continuous running gasifier for heat and power production. The reactor is a co-current - two stage 

fixed bed. The gas produced is cooled and fuelled to a gas engine. The heat released from the hot 

gas during the cooling is utilized for drying and pyrolysis of the biomass and for pre-heating the air 

fed as oxidizing agent in the gasifier [Hemriksen, 2006].  

Harboore, Denmark: since 1996 more than 8000 hours of operation have been registered for the 

plant in Harboore. The gasifier provides district heat for the municipality of this city. It is an updraft 

wood-chips gasifier and the gas is burned in a gas-fired boiler. Since 2002 the gas cleaning system 
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has reached an adequate level to be used as fuel in a gas-engine (two engines of 750 kWe have been 

added)  

Graested Denmark: The Biosynenergi has built and operates a small demonstration plant for heat 

and power generation that has been in operation for more than 4000 hours. The plant it is a 

continuous downdraft fixed bed gasifier (open core), with two points for air input (primary and 

secondary). The plant supplies 175kWth of heat in the district heating of the local community and 

75kWe.  

For some of the plants described above has been possible to find data on the typical gas 

composition produced and they have been reported in table 2.1.  

Table 2.1 Main characteristics of the gasifier described above 

Location Fuel Gasifyin

g agent 

CO CO2 H2 CH4 N2 Power 

output 

Grevè di Chianti, 
Italy 

RDF Air 8.8 15.7 8.6 6.5 45.9 
6.7MWe 

15MWth 

Gussing, Austria Wood chips Steam 20-30 15-25 35-45 8-12 3-5 
2MWe 

4.5MWth 

Enemora, Spain Almond shall Air - - - - - 750kWe 

Lahti, Finland 
RDF, wood 

paper 
Air 

- - - - - 20MWe 
70MWth 

Rudersdorf, 
Germany 

Biomass and 
raw materials 

Air 5.4 - - 2.5 - - 

Varnamo,Sweden Wood chips, 
pellets, RDF 

Air,steam 
oxygen 

16-19 15-18 9.5-12 6-7.5 50 
6MWe 
9Mwth 

Freiberg, Germany Wood chips, 
waste wood,  

Steam 
oxygen 

32 25 14 0.2 - 
150 kWe 

BioDiesel 

DTU, Denmark Wood chips Air 19.6 15.4 30.5 1.2 33.3 17.5kWel  

Harboore, 
Denmark 

Wood chips Steam air 22.8 11.9 19.0 5.3 40.7 
1.4MWe 
3.4MWth 

Graested,Denmark Wood chips Air - - - - - 
75kWe 

175KWth 

Skyve, Denmark Wood chips Air 22 11 20 5 40 
5.4MWe 

11.5MWth 

Kokemaki,Finland Wood fuel Air - - - - - 
1.8MWe 
3.3MWth 

Several other gasification plants exist in Europe and are already operative or under investigation 

even if they have not been included in the group above because they have less then 2000 hours of 

operation. However, it is worth to mention some of them. The scale of the plant goes also below 

1MW. The smaller gasifier reported is of 70kWe. 
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Kokemaki, Finland: Condens Oy with VVT has developed a new Novel gasification process that 

seems to be an economical attractive solution for power generation. The system has an innovative 

fuel feed system, based on forced fuel flow (suitable light and fine fuel such as REF), a fixed bed 

reactor and an advanced cleaning system for tar removal. It can work with different fuel with 

moisture content up to 50%. The outgoing gas is used in turbo-charged gas engines. [Hannuala, 

2007] 

Skyve, Denmark: In Skyve a bubbling fluidized bed (BFB) gasifier is used to produce gas from 

wood-based biomass. This gas is then used in of reciprocating engines in a combined heat and 

power (CHP) application. The fuel is fed through two lock hopper systems by feeding screws into 

the lower section of the gasifier’s fluidized bed. The gasifier can operate at a maximum of 2 bars 

over pressure and 850 º C temperatures. Air is used as the gasification medium and dolomite is used 

as the fluidized bed material [Salo, 2009].  

Gjol, Denmark: T/K Energi A/S has developed, built and tested a three-stage gasifier with dry 

cleaning. In this design the three sub processes of pyrolysis, oxidation and reduction are separated. 

This enables to optimize each step and the raw gas produced show a low tar content. Steam is 

injected as heat transfer medium in the pyrolyser which is not externally heated. The gas cleaning 

session is very simple, since the gas is almost free of tar. 

The notable gasification plant developed in Europe at demonstration or commercial scale are listed 

in table 2.2 [Shures, 2006]. At every plant a number is associated, thus it is possible to see the 

location of the plant in figure 2.2. 

Table 2.2 Gasification plant active in Europe 

Country Location (n°) Plant description MWth 

Austria Gussing(1) FICFB BMG CHP at demonstrative scale 8 

 Neustadt (2) Down draft BMG CHP demonstrative scale 2 

Denmark Harbore (3) Updraft CHP demonstrative scale 5 

 Gjol (4) 3-stage gasification process at demonstrative scale (TKEnergi) 3 

 Graested (5) Continuous open core gasifier Biosynegeri 0.17 

 Lyngby(6) 3-stage gasification plant for heat and power generation 
(Viking) 

0.07 

 Skive (7) Carbona Renugas fluidized bed CHP at demonstrative scale 30 

Finland - 8 updraft gasifier by Bioneer 5 

 Kokemaki (8) Novel updraft gasifier at demonstration scale 7 

 Lahti (9) CFB co-firing plant by Foster Wheeler 50/86 

 Varkaus (10) Fluidized bed metal recovery gasifier  40 

Germany Schwarze (11) Plant for waste to methanol conversion at commercial scale 130 

 Rudersdorf (12) Lurgi CFB gasifier firing cement kiln 100 

 Oberhausen (13) Fraunhofer Umsicht CFB at pilot scale 0.5 

 Freiberg (14) CHOREN Carbo-V two stage entrained pilot plant 1.0 

 Freiberg (15) Future energy pyrolyser/entrained flow GSP gasifier 3-5 



Chapter 2   Biomass gasification: state of the art 

 31 

Germany Pfalzfeld (32) A new fully automatic wood gasifier developed from 
Mothermik® which is available for commercial market. 

0.25 

Italy Chianti (16) TPS CFB RDF plant at Greve in Chianti 15 

 Trisaia (17) ENEA CFBG pilot plant  0.5 

Netherlands Geertruidenberg(18) AMER/Essent/Lurgi CFB gasification co-firing plant 85 

 Willem-Alexander 
(19)  

Biomass co-gasification Shell entrained coal gasifier (35 MWe 
from biomass) 

250 

 Tzum (20) CFBG plant 3 

 Petten (21) Several pilot plants at ECN  

Spain Enemora (32) Fluidized bed gasifier for almond shell 0.75 

Sweden Karlsborg (22) Foster wheeler Energy CFBG using paper mill 30 

 Norrsundet (23) Foster wheeler Energy CFBG using paper mill 20 

 Sodracell (24) Gotaverken CFBG at Sodracell for paper mill 30 

 Varnamo (25) Bioflow foster wheeler Energy CHP at demonstration scale 18 

Switzerland Spiez (26) Pyroforce downdraft BMG system 0.2 

UK North-Ireland (27) Rural generation downdraft BMG system 0.1 

 North- Ireland (28) Biomass Engineering Ltd, down draft BMG CHP system 0.25 

 North Ireland (29) Exus Energy down draft BMG CHP systems 0.3 

 Gloucestershire (30) Charlton energy rotary kiln waste gasification plant - 

 Bristol (31) Compact power two stage waste gasification - 

Figure 2.2 Gasification plant built and operative in Europe (data in table 2.2). In black, the so called 
“successful experience” and, in red, others remarkable plants. 
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2.3 Operative gasification plant at lab, small and pilot scale  

A similar research has been done on gasification plant at smaller size. Indeed, plants at large scale 

are in operation since several years. The future step is the development of the gasification 

technology at small scale to serve remote areas, a few number of houses or a single unit. The 

gasification systems between 1 and 100 kW are very interesting and represent a remarkable 

opportunity for developing countries, mountains areas and solitary residence/houses. Anyway the 

technology at small scale is still not commercially available.  

By means of a literature review over the last 10 years, more than 30 papers have been gathered on 

biomass gasification experiments run in different plants, often with different feedstock. The 

gasifiers analyzed have been divided in three categories according to their size: laboratory scale 

(maximum high 1meter, power up to 1kW), small scale (maximum high 2 m, power up to 10kW) 

and pilot scale (maximum high 5-6m, power up to 100kW). In figure 2.3 and table 2.3 the plants 

considered are shown and listed. It can be seen that the plants at small scale are the less numerous. 

Table 2.3 Gasifiers at lab-small and pilot scale 

Laboratory Scale                  Number on 

the maps 

bed Gasification 

agent 

Ibaraki, Japan (1) [Toshiaki, 2005] 1 Fixed air-steam 

Newcastle, UK (2) [Midilli, 2001] 2 Fixed air 

Paris, France (3) [Nagel, 2005] 3 Fixed air 

Aquila, Italy (4) [Rapagnà, 2000] 4 Fluidized steam 

Zaragoza, Spain [Manya, 2006] 5 Fluidized air 

Lisboa, Portugal [Pinto, 2002],[Franco,2003] 6 Fluidized air/steam 

Hawaii, USA      [Turn, 1998] 7 Fluidized air-steam 

Extremadura, Spain [Gonzalez, 2008] 8 Fixed air-steam 

Zaragoza,Spain [Gil, 1999] 9 Fluidized air 

Marylend, US [Ahmed, 2009] 10 Fixed steam 

Trento, Italy [Baggio, 2009] 11 Fixed Inert/air 

Nykoping, Sweden [Zevenhoven-Onderwater, 2001] 12 Fluidized Oxygen 

Small scale    

Stockholm, Sweden [Zanzi, 2005],[Baratieri,2010] 13 Fixed air 

Londra,UK [Pindoria, 1998] 14 Fixed air 

Pelten, Netherlands [Van Kasteren, 2006] 15 Fluidized air-steam 

Eindhoven, Netherlands[Kersten,2003] 16 Fluidized air 

Guangzhou, China [Lv, 2004]   17 Fluidized air-steam 

Ibaraki, Japan [Wu, 2006] 18 Fluidized air-steam 

Zaragoza, Spain [Herguido, 1997] 19 Fluidized steam 

Guangzhou, China [Pengmei,2007] 20 Fixed air/oxygen-steam 

Trento, Italy [Pieratti, 2010]  35 Fixed  steam 
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Pilot scale    

Penang, Malysia [Zainal,2002] 21 Fixed air 

Sevilla, Spain   [Campoy,2009] 22 Fluidized Air/oxygen/steam 

Melle-Gontrode, Belgium [Vervaeke, 2006] 23 Fixed air 

Newcastle, UK [Dogru, 2002], [Dogru, 2008] 24 Fixed air 

Madrid, Spain [García-Ibañez,2004] 25 Fluidized air 

Vancuver, Canada [Li, 2004] 26 Fluidized air 

Delft, Netherlands [Chen, 2004] 27 Fluidized air-steam 

Lisboa, Spain [García-García, 2003] 28 Fluidized air-steam 

Medellin, Colombia [Ocampo, 2003] 29 Fluidized air 

Vienna, Austria  [Kramreiter, 2008] 30 Fixed air 

Gujarat, India [Pathak, 2008] 31 Fixed air 

Zaragoza, Spain [Gil, 1997] 32 Fluidized air-steam 

Coimbra, Portugal [Kikuchi, 2005] 33 Fixed oxygen 

Catalonia,Spain [Mitta,2006] 34 Fluidized Air-steam 
 

 

Figure 2.3 Gasifiers at lab-small and pilot scale (references in table 2.3) 

City, reference number (see table2.3) 
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The data reported on every paper have been analyzed and compared [Pieratti, 2008]. In each of the 

three categories investigated there is a slight tendency to adopt a fluidized bed configuration (55% 

on the total number of plants considered). The gasifying agent mainly adopted is air or a mixture of 

air and steam. Air is the primary choice since it is free and no further equipments are required to 

generate it as actually steam does. The less used is pure oxygen, even if it produces a gas with 

higher heating value. The use of oxygen implies its purchase, a safe storage place and safety 

measures to handle it. Figure 2.4 shows the gasification media adopted at different scales. 

Figure 2.4 Gasifying media adopted at different plant scale 

To achieve a comparison among the different experiences, the parameters equivalent ratio (ER), 

steam to carbon (SC), gasifying ratio (GC) low heating value (LHV) for biomass and gas produced, 

process efficiency and carbon conversion have been considered. Sometimes these information were 

directly available in the papers, otherwise they have been calculated, starting from other 

information, such as, for example, the type of feedstock or its proximate analysis, the final gas 

composition, the feeding rate, the gas production rate, the amount of oxygen, air or steam fed for 

kilogram of biomass. However, it has not been possible to collect the same information for all the 

gasifiers considered, hence some data are missing.  

Since the gasification tests, especially at lab and small scale, are usually performed to investigate 

the influence of different parameters on the whole process, the data collected have often a wide 

range of variation. Therefore a rectangular representation has been adopted to compare the results. 

Close to each rectangle the bibliographic reference has been reported, and in some case, also the 

gasifying agent adopted (a=air, s=steam; a-s=air-steam; ox=oxygen). 

Some calculations have been performed to use a unique measuring unit; where possible, the 

biomass heating value, expressed in different ways (on wet basis, as received (ar), on dry basis or 

on dry ash free) has been converted to LHV(dry basis). Instead when only the proximate analysis was 

available, the HHV (High heating value) has been computed according to the Milne’s formula. 
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In the papers where the gas composition rather then the gas heating value was recorded, the LHV(dry 

basis) has been computed as the weight average of the low heating values of the main gases, reported 

by [Waldheim,2001]. 

The characteristic parameters of the gasification processes have been compared in different way to 

find out functional relations among them. The process efficiency (ε), where not indicated, has been 

calculated if the gas flow rate was known. 

2.3.1 Temperature versus gas heating value 

In figure 2.5 the gas heating value has been plotted versus the gasification temperature (on the left) 

and versus the biomass heating value (on the right). Theoretically, with a constant ER, it is expected 

an increasing of the heating value with the temperature up to 600-700°C, and then an almost 

constant LHV is reached. This tendency is not seen in the chart below, since different ER have been 

used in the experimental experiences compared, and the gasification temperature starts from 700°C. 

Viceversa, increasing ER the gas heating value decreases. 

Figure 2.5 Gas heating value versus temperature and biomass LHV. For the associated number see table 
2.3 

Actually the syngas heating value depends on the gasifying agent, on the type of feedstock used and 

on the plant configuration. This explains why the heating value of the gas can varies in a wide range 

even at the same gasification temperature. It has been seen that the operative gasification 

temperature ranges between 700-900°C; Among 900 and 1000°C few experiences have been found, 

and always in fixed bed plants.  
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In table 2.4 the values of ER and the correspondent heating value (HV) of the gas produced are 

listed. 

Table 2.4 Gasifiers at lab-small and pilot scale 

Bib. ref. Gasifying media Equivalent ratio HV (MJ Nm-3) 

[Turn, 1998]                     air/steam 0.00-0.37  9-11.5     LHVdry 

[Lv, 2004]                        air/steam 0.19-0.27             6.7-9.2     LHVar 

[Ocampo, 2003]             air 0.21-0.27             2.7-3.3     HHVar 

[Li, 2004]                        air 0.22-0.54 2.4-6.1      LHVdry 

[Gil, 1997]                       air 0.18-0.45 3.7-8.4      LHVdry 

[Chen, 2004]                      air/steam 0.3 3.46         LHVar 

[Van Kasteren, 2006]      air/steam 0.1-0.4 11.2-20.1   LHVdry 

[Toshiaki, 2005]                air/steam 0.2-0.4 8.9-13.1    LHVdry 

[Zainal,2002]                air 0.27-0.43 4.6-5.6     HHVar 

[García-Ibañez,2004]    air 0.41-0.73 2.9-3.8b    LHVdry 

[Wu, 2006]                   air/steam 0.2  16-20       LHVdry 

[Manya, 2006]              air 0.25-0.35 3.9-4.1      LHVdry 

[Pindoria, 1998]           air 0.2-0.55             4.5-8        LHVdry 

[Kersten,2003]             air 0.0-0.19    12.8       LHVdry 

[Kramreiter, 2008]       air 0.28-0.36 5.6-6.3      LHVdry 

[Kramreiter, 2008]       air 0.22-0.26 4.7-5.7      LHVdry 

[Kramreiter, 2008]       oxygen- steam 0.22-0.26 9-11.1       LHVdry 

[Gil, 1997]                    oxygen- steam 0.24-0.51         10.3-13.5     LHVdry 

[Herguido, 1997]          steam 0.0         12.2-13.8     LHVdry 

It can be pointed out as the higher HVs are registered for ER lower or equal to 0.25; when the ER 

raises the gas energy content decreases because of the greater availability of gasifying agent which 

increases the percentage of oxidized species. On the contrary, when steam is added, the HV reaches 

higher values since the gas is enriched in hydrogen. Furthermore it has been noticed that ER values 

for pilot plants are sensibly higher than the one adopted in laboratory or small scale apparatus; this 

is due to the need of supporting a stage of combustion in order to obtain a self-sustained process; as 

a consequence, the gas yield by pilot plants has lower calorific value then the ones produced by the 

others. 

2.3.2 Temperature versus efficiency and carbon conversion 

The data related to the process efficiency have been charted in Figure 2.6 versus temperature. It 

clearly appears that, the highest efficiencies are reached with a mixture of air and pure oxygen 

(filled rectangular) even at lower temperatures respect to other experiences where only air was used. 

Theoretically, the carbon conversion is linked to the temperature even if, from the data collected, 
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this relation has not been observed. Here, except for [García-García, 2003] where the goal was to 

maximize the char production, the conversion percentages reached are always higher than 50%.  

 

 
Figure 2.6 Process efficiency versus temperature. The filled rectangular are the tests performed with a 
mixture of air-steam as gasifying agent (for the number-reference see table 2.5). 

Table 2.5 Gasification temperature and carbon conversion of some experiences 

Rif. Bib Temp [°C] Temp [°C] CC [%] 

[Lv, 2004] (17)                       air-steam 700-900 68.7-92.6 

[Ocampo, 2003] (29)             air 812-872 47-70 

[Li, 2004] (26)                       air-steam 700-850 81.6-100 

[Pinto, 2002] (6) air-steam 730-900 50-98 

[García-Ibañez,2004] (25)    air 780-800 81-87 

[Manya, 2006]  (5)            air 850 57-60 

[Pindoria, 1998] (14)          air 700-950 75-90 

[García-Garcia,2003] (28)    steam 800-850 10-23 

2.3.3 ER versus efficiency and carbon conversion 

Finally the equivalent ratio has been charted against carbon conversion; it is expected an increasing 

in carbon conversion with the ER value; the few data deduced prove this tendency as shown in 

figure 2.7. Globally, the process performance floats between 40% and 60%, except for one 

experience [Ocampo, 2003, (29)]. The data show that this parameter tends to increase with the 

equivalent ratio. Both carbon conversion and process efficiency seem to have a similar trend 

regarding the ER; an opposite behavior characterizes the relation between ER and gas heating 

value. High carbon conversion values increase the global process performance, and it result in 

higher outgoing gas flow rates. However, the efficiency depends also on the gas calorific value, as 
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shown by ([Li, 2004], [Manya, 2006]); the former shows smaller efficiency even with higher carbon 

conversion due to a lower gas heating value. 

 

Figure 2.7 Equivalent ratio versus carbon conversion 

Globally it can be concluded that the equivalent ratio is one of the most significant parameter since 

for ER reduced values, high heating value of the syngas and lower conversion efficiency of the 

process have been observed. The temperature plays an important role on the final gas quality, 

although it is of secondary importance if compared with the equivalent ratio. The carbon conversion 

is generally above 50% unless the goal is to maximize char production. The energy efficiency is 

linked to the gas heating value and to the conversion percentage; comparable energy efficiencies 

can be obtained both by means of high gas heating value and low carbon conversion (which usually 

occur in pyrolysis processes) and by means of low gas heating value and high carbon conversion (as 

in gasification processes). The analysis performed can be used as a starting point to plan future 

thermochemical biomass experimental facilities or industrial plants. 

2.4 Modelling activity: equilibrium and kinetic models 

The gasification process includes different sub processes: fast pyrolysis, partial oxidation of 

pyrolysis products, gasification of the remaining char and tar conversion in other. A high number of 

complex reactions occur during these sub processes and influence the process efficiency. The gas 

produced is also influenced by all these sub processes and by the rate of heating and the residence 

time in the reactor.  

The gasification process has been studied by the theoretical point of view, and different 

mathematical models have been built to try to simulate the thermochemical processes and to 

evaluate the influence of the main parameters such us temperature, moisture content, air/fuel ratio, 

Rif. Bib* ER Efficiency,% 
  (7) a-s 0-0.37 45-62 
(29) a 0.21-0.27 21-32 
(26) a 0.22-0.54 39-50 
(27) a-s 0.3 39 
(25) a 0.41-0.73 44-65 
  (5) a 0.25-0.35 39-43 
(20) a 
(20) a-s 

0.22-0.26 
0.22-0.26 

20-24 
55-88 

* For the connection number-reference see table 2.5 
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steam/fuel ratio, gas composition and its heating value. Some models only look for the final gas 

composition at chemical equilibrium, while others try to reproduce the different sub processes along 

the reactor.  

The models can be divided in three groups: equilibrium models (stoichiometric and non 

stoichiometric), kinetic models and neural network models. Models where both equilibrium and 

kinetic aspects are linked have been also developed.  

2.4.1 Kinetic models 

The so called “kinetic models” are based on the description of the reactions mechanism of the 

process under the kinetic point of view. It is very important in designing, evaluating and improving 

gasifiers to have a realistic description and prediction of the gasification process. These models can 

be very accurate but heavy in calculations. Several models have been developed in these years 

based on the kinetic approach, i.e. [Wang, 1993], [Di Blasi, 2000], [Fiaschi, 2001], [Giltrap, 2003],  

[Yang, 2003],  [Jayah,2003], [Roshmi, 2004], [Dennis, 2005],  [Babu, 2006], [Gobel, 2007], 

[Sharma, 2008], [Fernoso, 2010], [Gordilla, 2010]. 

Wang and Kinoshita developed a model based on the mechanism of surface reactions at a fixed 

residence time and reaction temperature. By minimizing the difference between experimental data 

and theoretical results, the apparent rate constants were determined for different temperatures and 

residence times. The kinetic rate expressions found by [Wang, 1993] were used by Giltrap et al. to 

develop a model of the reduction zone in a downdraft biomass gasifier to predict the gas 

composition in steady-state conditions. The authors introduced the char reactivity fraction (CFR), 

which represents the reactivity of the char and is an important variable in the simulation, which was 

kept constant through the reduction region. The limit of this model is the difficulty in founding data 

to set the initial condition at the top of the reduction zone; indeed the pyrolysis and cracking 

reactions are usually not considered in the models, since the great number of reactions would make 

the model very complex.  

 

Figure 2.8 Gas composition foreseen by Giltrap model (left) and gas composition of Babu’s model 
changing the CRF value (right) 
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The model works under the hypothesis that the oxygen from the air inlet is totally consumed by 

combustion reactions with char while the N2 remains inert, that the pyrolysis products are 

completely cracked and that the solid carbon, in the form of char, is presents throughout the 

reduction zone.  

The model outputs were compared with experimental data and a good agreement was found. The 

only problem is the over prediction of methane respect to the experimental data. The authors try to 

correct the model considering that the oxygen in the air reacts with CH4 produced from the cracking 

of pyrolysis products but the predicted methane was still higher than the values observed in the test 

(figure 2.8 a).  

This model was drawn on by Babu who suggested of modifying the Char residual fraction (CRF) 

considering an exponential variation in order to better predict the temperature profile along the 

reactor. The model was implemented with a finite difference method. Several simulation were run 

changing the CRF value from 1 to 1000 but constant throughout the reduction zone, and then it was 

increased both linearly and exponentially along the reduction bed with values from 1 to 10000. The 

authors pointed out that a changing of the CRF value during the process leads to a better agreement 

with the experimental data considered, as shown in figure 2.8 (right).  

Di Blasi developed a one-dimensional unsteady model for a downdraft gasifier (stratified). Moisture 

evaporation, biomass pyrolysis, char combustion and gasification, gas-phase combustion, heat and 

mass transfer across the bed have been considered. The model has allowed the investigation of the 

influence of several gasification parameters, i.e. the biomass feeding rate and air to fuel ratio, on the 

produced gas quality and on the process efficiency.  

Jayah et al. built a model based on a previous one developed by Chen in 1987. The model is divided 

in three parts: in the first one the amount of oxygen needed is calculated on the basis of the fuel fed 

and the operating condition (ER value); in the second step the drying, pyrolysis and combustion 

processes are considered together and the air to fuel ratio calculated previously is used as input. The 

outputs of this second step are the concentrations and the temperatures of the solid and gaseous 

phases. These values are inputs for the third section which predicts the temperature profile along the 

axis of the gasification zone, as well as the gas composition and the conversion efficiency. Jayah 

changed the model introducing the Millingan’s Daming flaming pyrolysis sub-model to solve the 

over-prediction of the gas exit temperature. The model consists on two sub model, the Daming 

pyrolysis and the gasification zone. The first sub model is used to determine the maximum 

temperature and the product concentration of the gas leaving the zone. In the gasification zone the 

physical and chemical processes, the conservation flow equations, the transport phenomena and 

conservation principles are described, under the assumption that a single char particle moves 

vertically along the axis of the gasifier. 

Sharma has recently developed a thermodynamic and a kinetic model for the char reduction zone in 

a downdraft gasifier. Both the models have been coupled with mass and energy balance to predict 

the gas composition, the heating value, the conversion efficiency and the status of un-converted 
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char. The model predictions have been compared with experimental data, as shown in figure 2.9 

(left). The influence of the char bed length in the reduction zone has been also evaluated.  

Gordillo and Belghit have built a two phase biomass char steam gasification kinetic model for a 

bubbling fluidized bed with a nuclear heat as source of energy. The model can predict the gases 

concentration and temperature profiles. The model has been used to simulate three different 

gasifiers to see the effect of varying the height-to-diameter (H/D) ratio. Hydrogen has been found to 

be the principal product of the steam only gasification, as can be found in literature data. In figure 

2.9 (right) the hydrogen and carbon monoxide production for three different gasifiers is reported 

(G1: H/D=32, G2: H/D=12.67, G3: H/D= 5). The effect of the gas input superficial velocity effect, 

which is defined as the ratio between the steam input superficial velocity and the minimum 

fluidization velocity, has been investigated. The steam temperature is 800°C.  

Figure 2.9 Ccomparison of the equilibrium and kinetic model predictions for dry gas composition with 
experimental data(left), H2 and CO production foreseen by Gordillo’s model versus velocity ratio (right) 

Gobel developed a mathematical model for a fixed bed reactor based on: the mass and energy 

conservation in a simple one-dimensional flow, the chemical equilibrium in the gas phase, and the 

Langmuir-Hinshewood correlation to describe the char reaction kinetics. The results from the model 

have been compared with experimental data gathered from tests performed on a 100kW gasification 

plant at Denmark Technology University. The comparison is reported in figure 2.10 (left). To test 

the dynamic response of the model a study was carried out changing the operation condition from 

full load to half load. The model was able to predict satisfactorily the change in bed as function of 

time as well as the variation of temperature in time and gas concentration. 

Fiaschi and Michelini developed a mathematical model for bubbling fluidized beds starting from a 

previous one-dimensional model. The model is able to predict temperature and gas concentration 

along the reactor and take into account two phases: bubble and dense phase. The model is in 

agreement with the results of other kinetic models and gives a good correspondence with 

experimental results.  
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Kaushal et al. have also recently built a two-phase one dimension kinetic model. Several sub-

models to simulate pyrolysis, gasification, bed hydrodynamics and material property calculations 

compose the model. The model can deal with different biomasses and gasifying media and is able to 

predict temperature and gas concentrations along the reactor. The comparison with different 

experimental experiences has shown a satisfactory agreement (figure 2.10, right) 

[Gomez, 2010] has recently given an extensive survey of models for biomass gasification in 

fluidized bed.  

Figure 2.10 Comparison between the measured gas composition (points) and the measured gas composition 
(lines) (left) comparison of model prediction for steam as gasifying agent (right) 

2.4.2 Equilibrium models 

The weakness of the kinetic model is that their simulations cannot be generalized. They are strictly 

linked to a specific gasifier configuration and shape. The thermodynamic equilibrium models are 

more general because they are not influenced by the gasifier design. These models can help in study 

the influence of the main gasification parameters.  

The composition of a mixture at equilibrium can be studied using different approach. One of the 

main approaches is the so-called “Gibbs energy minimization method”. It consists in evaluating the 

concentrations of the species present that minimize the total Gibbs energy of the products, in 

accordance with the constraints imposed by the principle of conservation of mass and of the 

stoichiometry (elements conservation). Indeed the Gibbs energy reaches a minimum value at 

thermodynamic equilibrium. For a closed system at uniform temperature and pressure, (not 

necessarily constant) with a certain number of species in several phases, evolving from a non 

equilibrium to an equilibrium state the following expression can be written:  

0≤−+
ttt

TdSPdVdU                      (2.1) 
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This expression is valid both for irreversible path (inequality) and for reversible path (equality). If 

the closed system is kept at constant temperature and pressure during the evolution, the equation 

can be simplified in:  

( ) 0, ≤PT

t
Gd ,  where  G = U + PV – TS               (2.2) 

All irreversible process, at constant T and P, evolve in the direction that causes a decrease of the 

Gibbs energy. Indeed, the equilibrium state of a closed system, is the one for which the total Gibbs 

energy reaches a minimum with respect to all possible changes at the given T and P.  

The Gibbs energy minimization method, then, consists in writing an expression for (Gt) as a 

function of the number of moles of the species present in the several phases and then finding the set 

of values for the mole number that minimizes this function, subject to the constraints of mass 

conservation and stoichiometry (i.e. elements conservation). 

 For open system, with mass exchange with the surroundings, an expression for the Gibbs function 

can be also written, considering that the number of moles of the species can vary because of the 

mass exchange. In this case it is necessary to introduce a chemical potential µi, that is a function of 

the ni moles of the different compounds. 

 ∑
=

++−=
S

i

ii

t
dnVdPSdTdG

1

µ       (2.3) 

Two approaches can be used to solve a minimization problem: stoichiometric and non-

stoichiometric. Several authors have demonstrated that the two processes are essentially the same 

[Smith, 1982].  

The main hypothesis on which these models works are:  

The gasifier is considered zero-dimensional; 

� The heat losses are neglected because the reactor is considered perfectly insulated; 

� The reactor is considered perfectly mixed and with uniform temperature; 

� The residence time inside the reactor is assumed to be long enough to reach the 

equilibrium condition; 

� Tars are not modelled; 

� No information on the sub-processes or intermediate products is provided. 

2.4.2.1 Applications of equilibrium models 

Several authors have built and tested stoichiometric and non-stoichiometric equilibrium models 

[Ruggiero, 1999], [Zainal, 2001], [Li, 2001], [Kersten, 2002], [Altafini, 2003], [Li, 2004], [Melgar, 

2006], [Jarungthammachote, 2007], [Sharma, 2008], [Jarungthammachote, 2008], [Loha, 2011]. 

Often the equilibrium models have been modified in order to better predict the gas composition. 
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The authors who have worked on equilibrium models have pointed out that these models are a very 

useful tool even if they cannot always reach high accuracy. However, they are independent from the 

reactions mechanism and allow the prediction of the thermodynamic limits of the gasification 

process. Equilibrium approach is particularly suitable for downdraft fixed bed gasifier, 

characterized by a long residence time, and entrained flow gasifier. To simulate updraft fixed bed 

and fluidized-bed gasifiers with good accuracy, modified equilibrium model are usually needed. 

Some of the experiences found in literature are briefly summarized below. 

Ruggiero et al. developed a black box non-stoichiometric equilibrium model to predict the gas 

heating value and composition produced by a biomass gasification process. The model considers 

well-stirred reactor, adiabatic conditions and perfect gas behaviour for reactants and products (so 

the pyrolysis phase can not be modelled). The conservation of chemical species is described by a set 

of equations plus the equations needed to take into account the thermal equilibrium. Ninteen 

compounds were considered in the model.  

Zainal et al. modelled a downdraft gasifier by means of a stoichiometric equilibrium model. The 

model was used to investigate the influence in the gas composition of different biomasses and 

different moisture contents. The gas heating value predicted by the model was in reasonable 

agreement with the experimental one. 

Jarungthammachote et al. built an equilibrium model based on the equilibrium constant to foreseen 

the gas composition coming from a downdraft gasifier. Comparing the model’s output and the 

experimental results of other researchers, they found out some coefficients to correct the 

equilibrium constant of the water-gas shift reaction. The predicted results showed a good agreement 

with experimental values. The same authors, in 2008, developed a non-stoichiometric equilibrium 

model and applied the model to three different gasifiers: a central jet spouted bed, a spout-fluid bed 

and a circular split spouted bed. The model showed a significant deviation respect to experimental 

values especially in CO and CO2 concentrations. The model was modified to take into account the 

carbon conversion, which is a very important factor. In this way, the agreement between the 

experimental and modelled data increased, even if high accuracy was not reached. The gas heating 

value (which is the measure of the energy that can be gained burning the produced gas) was 

overestimated due to the over-prediction of the carbon monoxide content in the gas. In table 2.6 the 

model versus experimental data of [Jarungthammachote, 2008] are reported. Loha et al used the 

same approach.  

Li et al developed in 2001 a non-stoichiometric equilibrium model to predict the gas yield from a 

circulating coal gasifier. Later, in 2004, the model was used to foreseen the gas composition from a 

circulating fluidised bed biomass gasifier. The agreement between experimental and modelling data 

was not satisfactory, thus the model was modified taking into account the non-equilibrium factors. 

Indeed, using the data from a pilot plant on the residual carbon and methane concentration in the 

syngas, the correspondent carbon and hydrogen fractions were withdrawn from the initial input data 

on the biomass composition. This method shows very good agreement between modelled and real 
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data both in coal and biomass gasification case, as shown in figure 2.11 for the biomass gasification 

case. 

Sharma proposed a full stoichiometric equilibrium model to predict the gas composition, the 

reaction temperature, and the solid residual fraction of a downdraft biomass gasifier.  The model 

describes the char-gas and gas-gas reactions in the char reduction zone. The model results are in 

reasonable agreement with experimental data collected from various source. The author has 

investigated the influence of moisture content in the feedstock, pressure, temperature and equivalent 

ratio. The best conditions for an efficient gasification process are: moisture content between 10-

20%, equivalent ration 0.3-0.4, and gasification temperature around 950°C.  

Table 2.6 Comparison between experimental results, original model (O-Model) and modified model     
(M-Model) from [Jarungthammachote, 2008] 

 H2(%vol) CO2(%vol) CO(%vol) CH4(%vol) N2(%vol) O2(%vol) HHV RMSerror 

Central jet spouted bed at 1323 K 

Exp 12.56 14.56 14.97 0.7 54.96 2.27 3.90  

O-Model 11.08 2.6 30.36 0 55.96 - 5.44 8.020 

M-Model 13.55 8.73 19.18 0 58.53 - 4.302 3.319 

Circular split spouted bed at 1388.3 K 

Exp 10.98 13.7 16.41 0.88 57.47 0.55 3.961  

O-Model 10.26 3.17 29.23 0 57.34 - 5.183 6.807 

M-Model 12.45 9.16 18.15 0 60.22 - 4.022 2.385 

Spout-fluid bed ER=0.35 at 1148.7 K 

Exp 8.43 14.95 11.61 2.52 61.55 - 3.891  

O-Model 14.99 10.42 20.68 0 53.9 - 4.688 5.935 

M-Model 16.07 14.42 13.71 0 55.8 - 3.917 4.133 

Spout-fluid bed ER=0.30 at 1127.65 K 

Exp 11.86 14.48 13.03 2.95 56.87 - 4.01  

O-Model 15.45 10.43 21.08 0 53.3 - 4.801 4.400 

M-Model 16.72 14.5 13.76 0 55.02 - 4.01 2.459 
 

Altafini et al. and Melgar et al. have reported similar conclusions about the influence of the air to 

fuel parameter and the biomass moisture on the gasification temperature, the gas composition and 

system efficiency. 

The modification of the equilibrium model by means of some coefficients coming from the 

experimental results is not the only way; another solution to improve the agreement between the 

model and the real data is the Quasi Equilibrium Temperature (QTE) approach. Usually the reaction 

temperature considered is the bed average temperature for the fluidized bed and the outlet 

temperature at the throat exit for downdraft gasifier. The idea is to use, in the equilibrium models, a 

lower reaction temperature instead of the real one, a so called “Quasi Equilibrium Temperature”. In 

this way a better accuracy between the model predictions and the real data has been observed. For 

example, Li et al. [Li, 2001] found that the kinetic carbon conversion in a pressurized gasifier of 
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coal at a temperature between 747-877°C is comparable to equilibrium predictions for a 

temperature of 250°C lower. Kersten et al. showed that for operating temperature between 740-

910°C the reactions equilibrium temperature for reaction 2.9, 2.10 and 2.11 should be assumed 

lower then the gasification temperature (583 ±25°C, 535 ±25 °C and 454 ±29°C respectively). 
 

         

Figure 2.11 Gas composition foreseen by the equilibrium model for different Air ratio values (left), 
comparison between the outputs of the modified models and experimental data (right) Legends H2 →: �, 
CH4 →�, CO→�, CO2→�,H2O→+,N2→� [Li, 2004] 

2.4.3 Neural network models 

Some researchers have applied the neural network approach to biomass gasification field. Artificial 

neural networks (ANN) are widely used in the field of pattern recognition, signal processing, 

process simulation and function approximation. ANNs are made up by interconnected layers of 

simple nodes which can be called “neuronlike”. The neurons act as nonlinear process elements 

within the network. The peculiar property of the ANN is that they are able to characterize non linear 

functional relationship. Additionally, little prior knowledge of the process technology is necessary 

to determine the structure of the resulting neural network based process model. Often a hybrid 

neural network (HNN) model is created for process modelling. This approach usually includes a 

part of the model where the first-principles of the analyzed process describes some characteristics of 

the process itself, and the neural network part which is used to estimate the unmeasured process 

parameters that are difficult to estimate from first principles. Frequently a multilayer feedforward 

neural network (MFNN) is adopted, which is a universal function approximator that is able to 

approximate any continuous function to an arbitrary precision even without a previous knowledge 

of the structure of the function to be approximate [Hornik, 1991]. 

Wills et al. [Wills, 1991] tried to apply the ANN model to provide estimations of biomass 

concentration in fermentation processes. Experimental measurements were used as secondary 

variables in the process. Promising results were obtained considering that was one of the first steps 

in the application of neural networks to biomass field. This topic was investigated also by Guo et al. 
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[Guo, 1997],[Guo,2001] who started performing a series of tests of coal gasification in a fixed bed 

reactor. Then they developed a HNN model combining a first-principles model with neural network 

parameter estimation. The model was tested with the data collected during the experimental 

activity. By means of the NN model, a parameter called “active char ratio” (ACR) was identified, as 

a function of gasification temperature and time, which shows a strong dependency with the type of 

coal. Afterwards they developed a HNN model to simulate the steam biomass gasification process 

in a fluidized bed gasifier. As before, a series of tests were performed in a fluidized bed gasifier 

investigating different biomasses, then the model was built to investigate the gasification profile of 

the biomass types. The model suggests that gasification behaviour of arboreal species is different 

from herbaceous ones. More recently Brown et al. [Brown, 2007] developed a model combining the 

equilibrium model and the neural network approach. The advantage of this approach is, from one 

side to improve the accuracy of the equilibrium model, and from the other to reduce the 

experimental data required avoiding the need of the NN model to take into account the mass and 

energy balances. The complete stoichiometry is formulated and the correspondent “reaction 

temperature difference” parameters are computed under constrain of non-equilibrium distribution of 

gasification products determined by mass balance data reconciliations. Temperature differences, 

fuel composition and gasifier operating conditions are related by the NN regressions. The model has 

been tested using data from an atmospheric fluidized bed gasifier. The first application of this new 

approach has given a useful insight for equilibrium modelling even if a further calibration of the NN 

model with more data is recommended. 
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Chapter 3  

 

Steam gasification: syngas suitability for Solid Oxide Fuel 
Cells 

 

3.1 Introduction 

The aim of the present project is to couple a small-scale gasifier with a SOFC stack. The fuel cells 

show high efficiency and little long term degradation when fed with hydrogen, but they successfully 

work also with methane, propane, carbon monoxide or a mixture of them. Considering the 

characteristics of the fuel requested by the SOFCs, the idea is to produce a syngas as rich as 

possible in hydrogen. For this reason, the gasification process has been studied to choose the proper 

gasifier, the gasifying agent and the operative temperature.  

3.1.1 Integrated biomass gasifier and fuel cell systems 

The performances of integrated biomass gasifiers and SOFCs systems have been investigated from 

the theoretical point of view by several authors, i.e. [Alderucci, 1994], [Omosun, 2004], [Cordiner, 

2007], [Bang- Moller, 2010], [Nagel, 2009], [Nagel, 2011], [Athanasiou, 2007], [Panopoulos, 

2006].  

Omosun et al. have developed a steady state model to investigate the performances of the 

integration of a Solid Oxide Fuel Cell with a biomass gasifier. The model was used to study the 

system efficiency and the costs considering two different options: a cold process for gas cleaning at 

a reduced temperature and a hot process involving gas cleaning at high temperature. The 

simulations showed an overall system efficiency of 60% for the hot process and 34% for the cold 

one.  

Cordiner et al. simulated a 14 kW energy generation system where a SOFC stack is supplied by a 

biomass gasifier. The gasifier is integrated with a system for heat recovery by SOFC off gas 

combustion, to realize high efficiency concept. An equilibrium model has been used (zero-

dimensional) for the gasifier and 3D CFD for the SOFC. The overall system efficiency found was 

45%.  

Nagel et al. have published a couple of works on the technical and on the cost analysis of a biomass 

integrated gasification (B-IGFC) fuel cell system. The work published in 2011 shows the 

experimental results collected from a series of tests performed in a B-IGFC demonstration unit 

composed by gasifier, gas cleaning session (with catalyst) and fuel cell stack. The gasifier and the 
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catalytic unit could work without problems; the SOFC unit feed with syngas produced 

approximately 40% less current compared to methane operation. Ash deposition was the major 

obstacle for a smooth SOFC system operation. 

3.2 Steam gasification for hydrogen production 

The syngas produced from a gasification process can have different composition depending on 

process temperature, type and amount of gasifying agent and feedstock. In the preliminary part of 

this project a two phases, thermodynamic equilibrium model has been developed by Baratieri et al. 

[Baratieri, 2008] to compare different gasification processes, from a thermodynamic point of view. 

Data from different experimental experiences were used to test the model and a good agreement 

was found. The idea was to find out the best configuration and the parameters values to maximize 

the hydrogen content in the syngas. In the following paragraphs a brief description of the model and 

the simulations outputs is given, since it has been the starting point of the reactor design. 

3.2.1 Structure of the thermodynamic equilibrium model 

As described in Chapter 2, the equilibrium composition of a mixture can be estimated with different 

approaches. In this model the so called Gibbs energy minimization method has been chosen; it 

consists in looking for the composition of the species which minimize the Gibbs energy of the 

products, respecting the constraints imposed by the mass and stoichiometry conservation. The main 

advantage of this method is that it does not require the selection of a number of “representative” 

chemical reactions allowing the formation of (equilibrium) products; it is nevertheless necessary to 

establish the chemical species expected in the product mixture. 

The code uses the Cantera software library tool (a collection of object-oriented software tools for 

problems involving chemical kinetics, thermodynamics, and transport processes [Goodwin, 2005]). 

The solver implemented in Cantera is a version of the Villars-Cruise-Smith (VCS) algorithm (a well 

suited method to handle multiphase problems), that finds the composition minimizing the total 

Gibbs free energy of an ideal mixture [Smith & Missen, 1982]. The NASA [McBride et al., 1993] 

and the GRI-MECH [Smith et al., 2000] databases have been used to evaluate the thermodynamic 

properties of the chemical species considered in the model. The VCS algorithm applied the 

stoichiometric formulation to solve the problem. In details, the constraints of the closed system are 

treated by means of the independent stoichiometric equations and the result is a problem of 

unconstrained minimization.  

 ∑
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 initial composition vector 

 νj stoichiometric coefficients vector 

 ξj extents of the reaction 
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The minimization procedure applied to the G function implies the computation of its partial 

derivatives with respect to the ξj extents of the reactions (3.5) and gives the equilibrium condition 

(3.6). 
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The VCS algorithm utilizes this procedure, that may be the more efficient when there are only a few 

independent stoichiometric equations. Stoichiometric algorithms search among a set of states that 

all satisfy the element constraints for the one state that satisfies the conditions of chemical 

equilibrium. The model considers 63 chemical species, 60 for the gaseous phase and 3 for the solid 

one (shown in table 3.1). The information required in input are the elemental biomass composition, 

the process temperature and pressure and the amount of gasifying agent fed to the process.  

Table 3.1 Chemical species considered in the model 

Phase Group Compounds 

Gas 

phase 

Inorganic carbon compounds C(g)  CO  CO2 

Hydrogen compounds H  H2  O  O2  OH  H2O  HO2  H2O2  HCO   

Nitrogen compounds 
N  N2  NH  NH2  NH3  NNH  NO  NO2  N2O  HNO  CN  HCN  
H2CN  HCNN  HCNO  HOCN  HNCO  NCO 

Sulfur compounds S  SO2  SO3  H2S  COS  CS2 

Hydrocarbons 
CH  CH2  CH3  CH4  C2H  C2H2  C2H3  C2H4  C2H5  C2H6  
C3H7  C3H8  C6H6  C10H8  C12H10 

Other organic compounds 
CH2O  CH2OH  CH3O  CH3OH  HCCO  CH2CO  HCCOH  
CH2CHO  CH3CHO   

Solid 

phase 

Carbon C(s) 

Ash CaO  SiO2 

 

3.2.2 Model outputs 

The model simulations show that the gas yield is mainly composed by six of the 63 chemical 

species considered: carbon dioxide, carbon monoxide, hydrogen, methane, water and residual solid 

carbon. Nitrogen is present only if air is used as gasifying medium. Several simulations were 

performed considering different biomasses, different operation temperature and gasifying agent 

(steam or air). 
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The hydrogen concentration is greater if steam is used as gasifying agent. Investigation on the effect 

of different Steam to Carbon values (SC= ratio between the moles of H2O fed and the moles of 

carbon in the biomass) have also be done. In figure 3.1 and 3.2 the results of the model simulations 

are reported [Baratieri, 2008].  

Figure 3.1 Simulation output for air gasification process: gas composition (left) and LHV (right) for 
different Equivalent ratio values (ER= ratio between moles of O2 fed and moles of O2 needed for 
complete oxidation) [Baratieri, 2008] 

Figure 3.2 Simulation output for steam gasification process: gas composition (left) and LHV (right) for 
different SC values  

Thanks to the model outputs, the steam gasification process has been chosen as the most suitable for 

the purpose of the present project. In Figure 3.3 only the hydrogen concentration (%, dry 

composition) is reported for different temperature and SC values. These values have been chosen to 

reduce the residual solid carbon. Indeed the 2-phase model has estimated that for SC greater than 

1.5 no solid char is formed (figure 3.4). Thus, considering SC=2 and SC=3, the highest hydrogen 

production is theoretically reached for gasification temperature above 650°C, as shown in figure 

3.4. 

The reactor has been designed to work at a maximum temperature of 1000°C, even if this value has 

never been tested. The experimental activity has been performed at temperature between 700 and 

800°C. Lower gasification temperature are not recommended because more tars are produced and 

the temperature of the outgoing syngas is not enough high to be fed in the SOFCs. On the other 
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side, too high temperatures reduce the tars concentration but increase the energy required to heat the 

system up and can decrease the life of the materials due to thermal stresses.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3 Hydrogen concentration for different SC values from 0 to 3 

Figure 3.4 Solid carbons residual for different ER (left) and SC (right) values 

3.3 Fixed bed gasifier and experimental facilities 

Since the modelling part has pointed out that the use of steam as gasifying agent allows a higher 

hydrogen concentration in the syngas, the experimental activity has started designing and building 

up a co-current gasifier for steam gasification.  

The main parts of the gasifier realized are: 

� the reactor;  

� the ash collector; 

� the feeding system; 

� the steam generator; 

� the cleaning stage; 

� the measurements tools. 
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During the development of the present work, the gasifier has been modified and improved several 

times. The experimental activity has been divided in two phases: the first performed with a semi-

continuous fixed bed gasifier and the second with a continuous fixed bed gasifier. The difference 

between the two configurations consists in the system of char discharging that has been changed in 

the middle of the project. As it will be seen from the experimental results, this change has had a 

strong influence on the system. 

3.3.1 Fixed bed gasifier: description 

The reactor consists of two coaxial cylinders shaped vessels, having external diameter of 102 mm, 

height 480mm, and net volume available of 0.0037 m3. A scheme of the reactor is reported in figure 

3.5 (Section C-C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Scheme of the reactor: the two coaxial cylinders are visible in section C-C. 

Section B-B 

Section A-A 

Section C-C 
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The gasification reactions occur in the external cylinder: the biomass is fed from the top and the 

steam is fed through the internal cylinder. Indeed the steam, externally generated, flows first in the 

internal cylinder from the bottom to the top; at the top a series of holes allow the passage of the 

steam from the internal to the external tube.  

Since both the biomass and the steam are fed from the top of the rector, the gasifier has a co-current 

configuration. The reactor is externally heated by means of four electric ovens placed around the 

reactor (maximum power 1.5kW each). The reactor is realized in Inconel® (1300 K, 2 barg design) 

and it has a maximum power input between 11-13 kW. The nominal load is 2.5kg h-1 of biomass. 

In the upper part of the gasifier, two compressed air-driven valves are placed. The aims of these 

valves are: 

� to divide the reactor (the hot zone) from the biomass feeding system avoiding that air comes 

in the reaction chamber by means of the feeding tube;  

�  to avoid that the hot syngas yield exits from the gasifier through the feeding box.  

To reach these goals the valves are open alternatively during the feeding of the system.  

The ash-collector is a small box placed at the bottom of the reactor, below a grate, which divides 

the reaction chamber from the ash collector. It is of small size, since from the simulation performed, 

the residual solid fraction for SC=2 or SC=3 should be close to zero. The ash and the fraction of 

solid carbon produced during the process remain on the grate until when the operator manually 

moves the grate discharging the char in the downstream collector. This operation can be done at 

variable interval of times according to the amount of solid carbon produced (function of the feeding 

rate, the gasification temperature and the SC value). 

The original feeding system consisted of an open container, funnel-shaped, connected with the 

reactor through a vertical tube. As said above, two compressed air-driven valves, located along the 

vertical tube, divide the hot zone from the feeding system. The biomass is manually loaded in the 

container before the heating up of the system. Different type of feedstock can be used, as long as cut 

in small pieces (length: 10-20 mm, width 5-10 mm). 

                                      

Figure 3.6 The original feeding system (left) and the modified one (right) 
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The feeding system has been modified after few preliminaries tests because, due to the heat 

conduction phenomena, the temperature reached by the vertical tube during the heating phase is 

high enough to cause the sticking of the biomass pieces in a single block that cause the closing of 

the tube. In spite of the two valves that divide the feeding box by the hot zone, two times happened 

that the feeding pipe was blocked due to the pellets sinterization in a single block. This is probably 

due to the glue used in the pellets preparation. Anyway, the funnel-shaped container was changed 

with a closed hopper and a horizontal Archimedean screw which transports the biomass to the 

vertical tube only when the operative temperature has been reached and the test can start. The 

Archimedean screw is moved from an engine connected to an inverter. The feeding rate depends on 

the rpm (rounds per minute) which can be manually set on the inverter. To know the amount of the 

biomass fed according to the screw running time a series of tests have been done. The characteristic 

parameter considered is the “exit frequency” of the screw which can be manually set on the inverter. 

The tests results are reported in table 3.2.  

Table 3.2 Feeding rate according to the frequency exit of the Archimedean screw 
 

“Frequency exit” Running time (s) Biomass fed (g) Feeding rate (g/s) 

70 
10 738 73.83 
20 1463 73.15 
30 2160 72.02 

50 
10 424 42.4 
20 1050 52.5 
30 1605 53.5 

30 
10 315 31.5 
20 618 30.9 
30 924 30.8 

10 
10 100 10 
17 170 10 

The tests have been pointed out that for values of the frequency exit below 10, the Archimedean 

screw has not enough energy to crash the pellets which cause the stop of the screw rotation. Thus, at 

least for this type of biomass (pellets), the minimum feeding rate is 10g /s.  

For the gasification tests the frequency exit has been kept fixed to 50, changing the running time 

according to desired feeding rate (i.e. to feed 1 kg of pellets 20 seconds are needed, for 1.5 kg 30 

seconds are needed). 

A known flow of nitrogen has been added from the top of the hopper and let flows through the 

entire system; thanks to the closed hopper and the nitrogen flow, the compressed air-driven valves 

are not more necessary. The nitrogen keeps the atmosphere inert and, at the same time, avoids the 

running up of the hot syngas toward the biomass box. A picture of the original and the new feeding 

system is reported in figure 3.6. 
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The biomass tested within this project is pellet of pinewood. The pellets have been chosen to 

guarantee homogeneity in size and composition, avoiding the problems connected with the non-

uniformity of the feedstock. The analysis of the elemental composition of the feedstock has been 

done and the data are reported in table 3.3.  

Table 3.3 Elemental composition of the biomass employed 

Elemental composition (% mass, dry sample) 

Pinewood pellets 

C: 47.03 H: 6.12 O: 46.83  N: 0.01 S< 0.01 

Moisture (% mass a.r.) 7.0 

Ash (%mass a.r.) 0.2 

Density (kg m-3) 1250 

LHV (MJ kg-1) 18.5 

Lenght (mm) 10-20 

An external company (Hysytech s.r.l) has provided the steam generator. The water is pumped in the 

steam generator and the flow is regulated by a flow meter. According to the feeding rate and the 

desired Steam to Carbon value, the water flow is set on the flow meter.  

Table 3.4 Amount of water required for different feeding rate and SC value 

Feeding rate: 1 kg h
-1

 Feeding rate: 1.5 kg h
-1

 

SC kg steam h-1 g H2O h-1 ml min-1 SC kg steam h-1 g H2O h-1 ml min-1 
0 0.0 0 0.0 0 0.0 0 0.0 

0.5 0.4 364 6.1 0.5 0.5 546 9.1 
1 0.7 728 12.1 1 1.1 1091 18.2 

1.5 1.1 1091 18.2 1.5 1.6 1637 27.3 
2 1.5 1455 24.3 2 2.2 2183 36.4 

2.5 1.8 1819 30.3 2.5 2.7 2728 45.5 
3 2.2 2183 36.4 3 3.3 3274 54.6 

Feeding rate: 2 kg h
-1

 Feeding rate: 2.5 kg h
-1

 

SC kg steam h-1 g H2O/h ml min-1 SC kg steam h-1 g H2O h-1 ml min-1 
0 0.0 0 0.0 0 0.0 0 0.0 

0.5 0.7 728 12.1 0.5 0.9 909 15.2 
1 1.5 1455 24.3 1 1.8 1819 30.3 

1.5 2.2 2183 36.4 1.5 2.7 2728 45.5 
2 2.9 2910 48.5 2 3.6 3638 60.6 

2.5 3.6 3638 60.6 2.5 4.5 4547 75.8 
3 4.4 4365 72.8 3 5.5 5456 90.9 

The steam can be superheated at temperatures up to 600°C. Due to the coaxial structure of the 

system, the heat exchange between the gasification zone and the inner cylinder where the 

superheated steam run, is favoured. Te higher is the steam temperature, the lower is the external 
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energy required to keep the system at the operative temperature (700°C or 800°C). In table 3.4 the 

amount of water required according to the feeding rate and the SC value is reported.  

Figure 3.7 shows the entire system. The red arrow indicates the reactor surrounded by the four 

electric ovens; the yellow arrow indicates one of the compressed air-driven valves (the biomass 

hopper is placed just above); the green arrow points the steam generator and the superheater and the 

blue one shows the ash collector. 

The cleaning unit that has been used for most of the tests performed consists of three cylindrical 

containers placed in series, filled with active carbon. In this way, the syngas produced is cooled and 

cleaned before the exit in the atmosphere. Only in a second phase, a catalytic filter has been added 

for hot gas cleaning before the fuel cells.  

 

 

Figure 3.7 Picture of the first version of the reactor realized 

3.3.2 Measurements tools 

A portable Hp Agilent 3000 Micro GC able to measure the concentration of CO2, O2, N2, CH4, 

C2H2, C2H4, C2H6, H2 and CO has been adopted for the gas analysis. Actually, this micro GC is one 

of the few portable instruments able to measure the hydrogen concentration besides the permanent 

gases. The system uses solid-gas columns which work at isothermal conditions. The gas is cooled 

down and cleaned before entering in the GC.  

The temperatures inside the reactor have been recorded by means of three K-thermocouples 
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consisting of two wires of Chromel® (Nickel-Chromium – positive lead) and Alumel® (Nickel-

Aluminium – negative lead). These sensors have been chosen because of their good performances 

in corrosive and oxidizing environments and for their wide operation temperature range, between -

200°C and 1370°C (accuracy range ±1.1°C to ±2.2°C). The thermocouples have been placed at 

different heights and radial positions (figure 3.8) to control the heating of the reactor, the influence 

of the superheated steam on the internal reactor wall, and to characterize the feedstock thermal 

behaviour (during the tests at least the deepest thermocouple is placed inside the biomass bed).  

A high sensitive flow meter has been used to control the water flow in the steam generator.  

Four energy meters allow the measurement of the energy required by the system. One measures the 

total energy (reactor + steam generator and super-heater) and three measure the energy required by 

the four electric ovens to heat the reactor at the set point temperature.  

 

 

Figure 3.8 Scheme of the thermocouples positions inside the reactor (on the left). Insulated and bare wire 
thermocouples (on the right). 

During the development of the project, several changes have been done to improve the system. At 

present, the whole system is almost completely controlled via PC (i.e. start and stop of the water 

pump for the steam generator, start and stop of the feeding system, acquisition data system). The 

interface PC-gasifier has been built in LabView environment. 

A Thermo Camera (ThermoCAM E 300, FLIR System) has been used in some occasions to 

estimate, qualitatively, the surface temperature of the reactor and to localize the major heat losses. 

3.4 Semi-continuous configuration 

The aim of the first experimental activity was to investigate the syngas composition at different 

gasification temperature and Steam to Carbon Value. The series of tests performed is summarized 

in table 3.5. The steam temperature has been also varied to see if any difference was visible in the 

temperature profile inside the reactor.  

K thermocouples placed at: 
135 mm (black) 
235 mm (grey) 
455 mm (light grey) 
From the top of the reactor 
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Table 3.5 Experimental tests performed 

Test number 1 2 3 4 5 6 7 

SC (mol H2O/mol C) 2 2 3 2 2 3 3 

Gasification temperature (°C) 800 800 800 800 800 800 800 

Steam temperature (°C) 200 600 400 400 400 400 400 

Feeding rate (kg h-1) 1 1 1,5 1-1.5 1.5 1-1.5 1-1.5 

Test duration (h) 2 4 3 3 3 3 3 

3.4.1 Experimental procedure 

During the gasification tests the procedure below has been followed:  

� First of all approximately 5 kg of biomass are loaded in the hopper;  

� the set point temperature is fixed for both the reactor and the steam generator; 

� a flux of nitrogen of 2 NL min-1 flows through the system during the heating up phase; 

� when the reactor and the steam generator have reached the desired temperature, the steam 

and then the biomass are added to the system; the nitrogen flux is rise up to 5 NL min-1; 

� the biomass is loaded every hour (20 or 30 seconds for 1 or 1.5 kg of biomass 

respectively), while the steam is added continuously; 

� the syngas produced is measured every 2 minutes by means of the portable GC; 

� the signal of the thermocouples is registered every 5 seconds during both the heating phase 

and the gasification test; 

� the char is manually discharged every hour before the next biomass load; 

� when the test is considered over the steam is closed and the nitrogen flux is set again on 

2NL min-1 until the complete cooling down of the system (or at least until the temperature 

is below 200°C). 

As said previously, pellets of pinewood have been used for the experimental activity. The residual 

solid fraction of the gasified pellets is around 18% of the original biomass weight. Additionally, the 

gasified pellets maintain the same shape and size of the fresh pellet, even if with a fragile and high 

porosity structure (figure 3.9). Since the grate placed at the bottom of the gasifier was designed with 

a close-mesh net to let only the char and ash pass in the ash collector, the char cannot be discharged 

easily. Only a small fraction of the char is mechanically crushed by the successive loads of fresh 

biomass and falls down in the char collector. 
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Figure 3.9 Fresh pellets (left) and gasified pellets (right) 

This particular behaviour of the pellets implies that the reactor cannot be emptied after every load, 

and the char produced remains inside the reactor. Since the char is approximately 18% of the initial 

biomass weight and it is characterized by high porosity of the gasified pellets the bulk density has 

been estimated around 450kg m-3. With this value some simulations of the reactor filling according 

to the feeding rate have been done. The results are reported below.  

Figure 3.10 Simulation of the reactor filling considering feeding rate of 1 kg h-1 (left) and 1.5 kg h-1 (right) 

Considering the amount of char produced for every biomass load, the number of successive loads 

according to the feeding rate has been estimated. For 1 kg h-1 the system can work for more than five 

hours, even if the bed height continuously increases; for 1.5 kg h-1 the maximum numbers of 

successive loads are 5. At the 6th load, the biomass would overflow from the reactor. For 2 kg h-1 it 

is possible to arrive at two successive loads, and for the nominal load (2.5 kg h-1), only one load is 

possible, as shown in figure 3.11. 

Figure 3.11 Simulation of the reactor filling considering feeding rate of 2 kg h-1 (left) and 2.5 kg h-1 (right) 
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Due to this reason, the feeding rates tested in the experimental activity are 1 and 1.5 kg h-1.  

In figure 3.12 the PFD of the reactor is drawn. The dashed lines indicate the non-operative parts in 

the first experimental phase. 

 

 

 

Figure 3.12 PFD of the system 
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3.4.2      Experimental results 

In this paragraph, the results of the 7 most remarkable tests performed in the first part of the 

experimental activity are listed.  

The legends in the charts of the temperature profile are referred to the three thermocouples placed in 

different positions inside the reactor: thermocouple 1 placed at 125 mm from the top,  

                                         thermocouple 2 at 255 mm from the top  

                                          thermocouple 3 at 455 mm from the top. 

 

� Test number 1 

Reaction temperature = 800°C SC= 2 Steam temperature = 200°C Feeding rate = 1 kg h-1 

  

Temperature profile Evolution of dry gas composition 

 

� Test number 2 

Reaction temperature = 800°C SC= 2 Steam temperature = 600°C Feeding rate = 1 kg h-1 

  

Temperature profile Evolution of dry gas composition 
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� Test number 3 

Reaction temperature = 800°C  SC= 2 Steam temperature = 400°C Feeding rate =1.5 kg h-1 

  

Temperature profile Evolution of dry gas composition 

 

 

� Test number 4 

Reaction temperature = 800°C SC= 2 Steam temperature = 400°C Feeding rate =1/1.5 kg h-1 

  

Temperature profile Evolution of dry gas composition 
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� Test number 5 

Reaction temperature = 700°C SC= 2 Steam temperature = 400°C Feeding rate =1.5 kg h-1 

  

Temperature profile Evolution of dry gas composition 

 

� Test number 6 

Reaction temperature = 700°C SC= 2/3 Steam temperature = 400°C Feeding rate =1.5 kg h-1 

 

 

Temperature profile Evolution of dry gas composition 
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� Test number 7 

Reaction temperature = 700°C SC= 2/3 Steam temperature = 400°C Feeding rate =1/1.5 kg h-1 

  

Temperature profile Evolution of dry gas composition 
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3.4.3 Data analysis 

A first consideration can be done on the temperature profiles of the seven tests reported. As can be 

seen, the biomass loads, fed at room temperature, are clearly registered by the thermocouples. The 

first load is registered by the deepest thermocouple, and the next loads stop above the bed of char 

formed during the gasification process touching the middle and at last the highest thermocouple. 

Due to the difficulties in char discharging (as described previously), the reactor is gradually filled 

and, according to the feeding rate (1 or 1.5 kg h-1), the test can be run for 4 or 5 hours. Furthermore 

it can be noticed that the temperature registered in the bed of biomass/char is 100°C lower then the 

gasification temperature set for the test.  

The syngas production is characterized by an initial transitory phase after the biomass load, that last 

approximately ten minutes, during which a peak of methane and carbon monoxide is produced. 

Afterwards a stable phase up to the next biomass load is registered. In the stable phase, methane is 

almost totally converted due to the high residence time inside the reactor. The average gas 

composition in the stationary phase has been calculated for each test, and the data are compared in 

table 3.6. The typical syngas composition is, on dry basis and N2 free, hydrogen (more than 60%), 

carbon dioxide (around 30%), methane (1-3%) and carbon monoxide (5-8%).  

Table 3.6 Average syngas composition during the stable phase 

Test number 

C2H2 

 % vol 

C2H4 

 % vol 

C2H6  

% vol 

CH4  

% vol 

CO  

% vol 

CO2 

 % vol 

H2 

 % vol 

1 0 0.00 0.00 1.3 4.2 29.2 63.4 
2 0 0.00 0.00 1.5 7.0 28.2 63.1 
3 0 0.00 0.00 1.4 3.7 30.0 64.9 
4 0 0.01 0.01 1.9 6.6 27.2 64.3 
5 0 0.03 0.03 2.9 3.6 30.4 63.0 
6 0 0.03 0.03 2.9 3.6 30.4 63.0 
7 0 0.03 0.03 3.5 4.0 28.4 64.0 

 

In figure 3.13 the concentration of the main gaseous compound comparing different gasification 

temperature and Steam to Carbon value are reported. A higher SC value produces higher hydrogen 

concentration even if the effect is not so noticeable. No remarkable differences in the gas 

composition can be noticed decreasing the gasification temperature from 800 to 700°C or changing 

the SC values. 

Probably the main effect of the decreasing of the gasification temperature is in the Tars amount (the 

higher is the gasification temperature the lower is the tar production due to the hydrocarbons 

thermal cracking) [Yu,2009]; unfortunately the Tars concentration has not been measured in these 

experimental campaign.  
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Figure 3.13 Gas composition at different gasification temperature and SC values 

To evaluate the process efficiency and the carbon and energy balance, it is necessary to know, in 

input, the amount of biomass and, in output, the char and gas production. Thanks to a known 

amount of nitrogen fed from the biomass hopper, it has been possible to estimate the syngas 

production. In figure 3.14, for instance, the instantaneous syngas production for one of the test 

performed (number 7) is reported. Similar graphs have been obtained for the others tests. In test 

number 7 the amount of nitrogen has been varied from 2 to 5 to 10 NLmin-1 to investigate if the 

syngas production (N2 free) remains constant.  

Figure 3.14 Instantaneous syngas production (N2 free) for test number 7 

The syngas production has been calculated knowing the N2 flow fed to the system and the N2 

concentration in the outgoing syngas. The measure of the gas production is strictly linked to the 

measure of the nitrogen in the syngas. The peak of syngas production registered immediately after 

the biomass load has not been considered reliable, since in that period of time, the falling down of 

the biomass cause a movement of the bed and a mixing of the gases (transitory phase). The gas 
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production in the stable phase is approximately constant at 8-10 NL min-1. Considering the total 

syngas production in the whole test a value of 0.65 Nm3/kgpellets has been calculated. This value is 

lower than the ones reported from other authors for different biomass type. For example, Lv et al. 

report a syngas production of 1.5 Nm3 kg-1 for biomass steam gasification at 700°C and 2.2 Nm3 kg-

1 at 800°C using pine sawdust as biomass [Lv, 2004]; Gonzalez et al. have measured, in an air-

steam gasification process (700-800°C), a production of 1.5-1.8 Nm3 for kilogram of olive waste 

[Gonzalez, 2008]. In 2007 Lv et al. have performed a series of gasification tests at 800°C in a 

downdraft gasifier adopting pine wood blocks as feedstock. The syngas production was around 1.5 

Nm3 kg-1 using an air-oxygen mixture as gasifying agent and 0.9 Nm3 kg-1 (N2 free) with air as 

gasifying agent [Lv, 2007]. Probably pellets, due to their low moisture and high density, have a 

lower gas production respect to the wood logs or chips. Observing the results for all the tests and 

excluding the peak of production just after the biomass load (one load every hour), the syngas yield 

is higher in the first 20-25 minutes. It has been concluded that feeding the system more regularly 

should lead to a higher and more stable syngas production. 

The gas heating value (LHV or HHV) has been also calculated for the gas composition measured 

during the stable phase of the test. The value is calculated as the weighted average of the heating 

values of the gaseous species present in the syngas (3.7) 

                  (3.7) 

The Low and High Heating value of the syngas are reported in table 3.7. The values are 

approximately the same for all the tests in spite of the temperature and the SC differences. 

Table 3.7 LHV and HHV of the syngas yield 

Test num T reactor (°C) T steam (°C) SC HHV(MJ Nm-3) LHV (MJ Nm-3) 

1 800 200 2 9.14 7.85 

2 800 600 2 9.52 8.22 

3 800 400 3 9.29 7.96 

4 800 400 2 9.80 8.46 

5 700 400 2 9.67 8.35 

6 700 400 3 9.65 8.32 

7 700 400 3 10.0 8.71 

 

∑ ⋅
gas

gasgas LHVx
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3.4.4 Carbon and energy balance 

At the end of each test, the char produced has been collected and weighted during the cleaning 

phase of the reactor. In table 3.8 the amounts of char measured are reported. On average, the char 

production is around 18-20% of the total biomass fed. Some problems have occurred during the 

cleaning phase of the test number 1 and 4 and the data have not been considered. The char produced 

from 1 kg of gasified pellets has been heated up to 550°C. The unburned residual quantity (ash) 

after the thermal treatment was about 1-2% of the initial mass of char (globally 0.3% of residual ash 

for 1kg of pellets). Thus, the char is carbon at almost 99 % with a remarkable heating value and, in 

the energy balance, is considered as a further energy source. Indeed, changing the system for char 

discharging, the residual char could be recycled and used to heat the reactor up. 

Table 3.8 Residual ash of the 7 tests 

Test number Biomass fed  (kg tot) Total char (g) g char/kg pellet 

1 1 n.a. n.a. 

2 4 700 175 

3 4.5 527 117 

4 4.5 n.a. n.a. 

5 4.5 800 177 

6 5 900 180 

7 5 1150 220 

To calculate the carbon balance, the input moles of carbon have been deduced knowing the 

elemental composition of the biomass. From the syngas production, the moles of carbon in the 

outgoing syngas have been estimated. Finally, the moles of carbon presents in the residual char 

have been added. A scheme is reported in figure 3.15 and the data related to the total syngas 

production of test number 6 and 7 are reported in table 3.9. It is important to remember that the 

measurement of the biomass fed is based on the measure of the operating time of the Archimedean 

screw (1 kg of pellets in 20 seconds). Since in this first part of the experimental activity the 

switching on and off of the Archimedean screw is manually controlled, the biomass fed has been 

estimated considering an approximation of 5-10%. Unfortunately the amount of tars has not been 

measured and a literature value of 60 g Nm-3 [Umeki, 2010] has been considered to close the carbon 

balance.  
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Figure 3.15 Scheme of the carbon balance 

Table 3.9 Syngas production and composition of the test number 6 and 7  

Test number 6 
 CO2 C2H4 C2H6 C2H2 H2 O2 CH4 CO N2 

Syngas tot. (NL) 875.9 16.9 18.7 0.2 1227.6 0.0 220.4 406.0 1496.85 
Molecular Weight 44 28 30 26 2 32 16 28 28 

Moles 39.1 0.8 0.8 0.0 54.8 0.0 9.8 18.1 22.1 
C Moles 39.1 1.5 1.7 0.0 - - 9.8 18.1  

Test number 7 
 CO2 C2H4 C2H6 C2H2 H2 O2 CH4 CO N2 

Syngas tot. (NL) 829.2 18.9 18.3 0.4 1190.6 1.2 224.9 427.7 1434.7 
Molecular Weight 44 28 30 26 2 32 16 28 28 

Moles 37.0 0.8 0.8 0.0 53.2 0.1 10.0 19.1 64.1 
C Moles 37.0 1.7 1.6 0.0 - - 10.0 19.1  

In table 3.10 the carbon balance is summarized for test number 6 and 7. Almost 50% of the initial 

moles of carbon remain in solid phase (char); the other 50% turns in gas (40%) and condensable 

compounds (Tars, 10%). The carbon balance is closed with an error of plus or minus 5%. 

Table 3.10 Carbon balance for test number 6 and 7. 

Test number 6 7 

Biomass fed (error 5-10%) (kg) 5 5 
Input carbon moles 182 182 
Moles of carbon in the syngas 70 69.5 
Moles of carbon in char 88 90 
Moles of Carbon in Tars 14 14 
Total moles of carbon out 172 174 
Global balance 95 % 96 % 
Percentage of moles in gas 39 % 38 % 
Percentage of moles in the solid residual fraction 46 % 50 % 

Gaseous 
compounds with 
carbon content: 
CO, CO2.CH4 

Initial moles of 
carbon fed through 
the biomass. 

Carbon content 
in Tars  



Chapter 3   Syngas suitability for Solid Oxide Fuel Cells 

 71 

To evaluate the process energy balance all the energy fluxes have to be considered. The input fluxes 

are the biomass characterized by its heating value, the energy required to keep the reactor at the 

gasification temperature and the energy needed for the steam generator and the super heater. Thanks 

to four energy meters (installed for the tests number 4-5-6-7) the electric energy required by the 

whole system (reactor + steam generator and super heater) has been measured both during the 

heating up phase and during the gasification tests. The raw data collected for the four tests are 

reported in table 3.11. The electric consumptions reported are referred to the heat required during 

the gasification test, excluding the heating up phase. 

The 4 measures listed are referred to: 

o M1: consumption of the whole system (reactor + steam generator + super heater); 

o M2: consumption of 2 electric ovens for the reactor heating; 

o M3: consumption of 1 electric oven for the reactor heating; 

o M4: consumption of 1 electric oven for the reactor heating. 

Table 3.11 Raw data of the electric consumption as red from the energy meters 

 
Time 
[h] 

Biomass 
[kg] 

SC 
[-] 

M1 
[kWh] 

M2 
[kWh] 

M3 
[kWh] 

M4 
[kWh] 

Tot ovens 
[kWh] 

Steam only 
[kWh] 

Test number 4 

Load 1 8.45 1 2 12.23 4.61 1.6 2 8.21 4.02 
Load 2 10.30 1.5 2       
Load 3 11.30 1 2 40.18 15.9 3.7 5.9 25.5 14.68 
Load 4 12.30 1 2       
End 13.25   51.79 20.6 4.7 7.4 32.7 19.09 

Test number 5 

Start 6.44   51.86 20.64 4.7 7.4 32.74 19.12 
Load 1 8.15 1.5 2 61.67 24.07 5.6 8.7 38.37 23.3 
Load 2 9.10 1.5 2 66.77 26.29 5.8 9.3 41.39 25.38 
Load 3 10.11 1.5 2 72.31 28.39 6.2 9.9 44.49 27.82 
End 11.46   80.01 31.54 6.6 11 49.14 30.87 

Test number 6 

Load 1 8.46 1.5 2 87.56 34.06 7.1 12 53.16 34.4 
Load 2 9.46 1.5 3 92.86 36.19 7.4 12.7 56.29 36.57 
Load 3 10.46 1 3 98.85 38.14 7.9 13.3 59.34 39.51 
Load 4 11.46 1 3       
End 12.26   107.22 41 8.4 14.5 63.9 43.32 

Test number 7 

Start 10.00   107.29 41.03 8.4 14.5 63.93 43.36 
Load 1 11.32 1 2 116.07 45 8.9 15.9 69.8 46.27 
Load 2 12.32 1 2 121.54 47.55 9.2 16.6 73.35 48.19 
Load 3 13.32 1.5 3 127 50.11 9.6 17.3 77.01 49.99 
Load 4 14.32 1.5 3 132.65 52.54 10 18.1 80.64 52.01 
End 15.32   139.3 54.79 10.5 19.1 84.39 54.91 

From the values collected, the power required for a single load has been calculated. The data are 

reported in table 3.12. The test number 7 is double because the SC value has been changed after two 
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biomass loads. Considering the differences among the four tests, the data on the energetic 

consumption have been compared in figure 3.16 and 3.17. In figure 3.16 the consumption of the test 

performed at the same gasification and steam temperatures (700 and 400°C respectively) but at 

different SC values are reported. As expected, the energetic consumption rises with the SC value 

and with the increasing of the feeding rate (from 1 to 1.5 kg h-1).  

Table 3.12 Power required by the system during the gasification tests number 4-5-6-7. 

Test number 
T  

[°C] 
SC 
 [-] 

Pellets  
[kg] 

M1 
[kW] 

M2  
[kW] 

M3  
[kW] 

M4 
[kW] 

Tot 
ovens 
[kW] 

Steam 
generator 

[kW] 
4 800 2 1 5.81 2.35 0.5 0.75 3.60 2.20 

5 700 2 1.5 6.01 2.45 0.3 0.68 3.46 2.54 

6 700 3 1 5.99 1.95 0.5 0.6 3.05 2.94 

7 700 2 1 5.47 2.55 0.3 0.7 3.55 1.92 

7 700 3 1.5 6.65 2.25 0.5 1 3.75 2.9 
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Figure 3.16 Power required for different SC values, gasification temperature = 700°C and steam 
temperature= 400°C. 

In figure 3.17, the comparison of the electric consumption has been done for test run with the same 

biomass loads (1 kg h-1) steam temperature (400°C) and SC value (SC=2) but with different 

gasification temperatures (700 and 800°C). There is only a slight difference in the global 

consumption which is lower for the test run at 700°C.  
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Figure 3.17 Power required for tests at different gasification temperature, with SC=2 and steam temperature 
= 400°C 

3.4.4.1 System efficiency 

Thanks to the data provided by the energy meters, the energy required by the entire system and by 

the single units is known. During the gasification test, the average consumption is 3-3.5 kWh for the 

ovens, for each single load. The steam generator requires between 2 and 3 kWh according to the SC 

value chosen. It is possible to estimate the system efficiency, considering the efficiency of the 

electric oven and the steam generator. 

To estimate the energy efficiency of the system the “in and out” energy fluxes have been 

considered. The input fluxes are: 

� biomass fed: 1-1.5 kg h-1; 

� Energy required in input by the system;. 

The output fluxes are: 

� The syngas produced (the syngas composition and production are known). The gas leaves 

the system at 600°C so the enthalpy of the outgoing syngas at high temperature has been 

calculated; 

� Residual solid carbon with a LHV of 32 MJ kg-1.  

 

The calculations of the energy balance of the test number 6 and 7 are reported in table 3.13.  

Characteristics of test number 6: 

1kg h-1, SC=3, Gasification temperature =700 °C, Steam temperature = 400 °C. 

And test number 7: 

1 kg h-1, SC=2, Gasification temperature =700 °C, Steam temperature = 400 °C; 

1.5 kg h-1, SC=3, Gasification temperature =700 °C, Steam temperature = 400 °C.  
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Table 3.13 Energy balance for test number 6 and 7 

Test number 6 7 7 

SC 3 2 3 

Feeding rate (kg h-1)  1 1 1.5 

Biomass Low Heating Value (MJ kg-1) 18.5 18.5 18.5 

Biomass input energy (kWh) 5.14 5.14 7.71 

Energy required by the ovens (kWh) 3.05 3.55 3.75 

Energia required by the steam generator (kWh) 2.94 1.92 2.9 

Ovens efficiencies (%) 70 70 70 

Efficiency of the steam generator (%) 75 75 75 

Energy required by the whole system (kWh) 4.34 3.93 4.80 

Total input Energy (kWh) 9.48 9.06 12.51 

Syngas produced (Nm3/kg) 0.7 0.7 0.7 

Syngas LHV (MJ Nm-3) 8.3 8.70 8.7 

Syngas entalphy at 873 K (MJ Nm-3) 9.3 9.5 9.50 

Syngas Energy content (MJ/kg pellets) 6.5 6.68 6.68 

Char produced (kg/kg pellets) 0.2 0.2 0.20 

Char production during the test (kg h-1) 0.2 0.2 0.30 

Recoverable Energy from burning char (kWh) 1.78 1.78 2.67 

Output energy (kWh) 3.6 3.63 5.45 

System efficiency 38% 40% 44% 

The global Energy efficiency is around 40%. This is an experimental apparatus and the heat losses 

through the envelope are remarkable. No great attention has been paid to the system insulation since 

the main goal was to study the gasification process. The temperature on the external surface is 

around 200°C. By means of a thermal infrared camera (ThermoCAM E 300, FLIR System) is 

possible to see, qualitatively, where the main heat losses are located. The pictures made with the 

thermocam are reported in figure 3.18. From the pictures, it can be seen that the hottest areas are the 

conjunctions between the electric ovens (clearly visible from the picture) and the upper (partially 

visible) and bottom part of the reactor (not visible in the picture) which are not completely 

insulated. The system has not been well insulated to be faster in the cleaning operations; indeed, 

after every test the system must be completely disassembled to be cleaned.  
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Figure 3.18 Pictures of the reactor done with a ThermoCam 

The “Cold gas efficiency” (E) has been calculated and it is around 38%. It is defined as: 
 

                               
biomassa

gg

HHV

vHHV
E

⋅
=         (3.8) 

 

where  νg is the syngas production  per kg of biomass. 

 If the carbon formed is also considered as an energy source, the 70% of the energy fed with the 

biomass is given back as in gas phase (35% as syngas) and as char (35%).  

In conclusion, this system configuration not allows a constant feeding of the biomass during the 

test. A remarkable amount of solid carbon is formed during the process, which remains inside the 

reactor due to the discharge problems previously describe. In spite of this, the system works and the 

syngas seems to be suitable to fed a SOFC fuel cell due to the high hydrogen content. 

3.5 Continuous gasifier 

3.5.1 New system configuration 

To solve the problem of char deposit on the bottom of the reactor and to turn the system from a 

semi-continuous gasifier to a continuous one, some modifications have been introduced. In details, 

the grid placed at the bottom of the reactor and the manual char discharging system has been 

replaced with an Archimedean screw. By means of the new screw, the char formed during the 

process fall down in a hopper located below the reactor (figure 3.19). The size of the screw (the 

discharge velocity) is the same of the biomass feeding screw. This allows the contemporary filling 

and empting of the reactor, at the same velocity. The switching “on and off” of the Archimedean 

screw and the operative time are controlled via pc. One of the air-pressure valves has been removed, 

because unnecessary.  
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Figure 3.19 Char collector with the Archimedean screw placed below the reactor 

A catalytic filter has been also added to the system for tars and hydrogen sulphide (H2S) abatement. 

The filter, filled with calcined dolomite and manganese oxides, is placed just after the reactor and 

the hot syngas goes directly thorough the catalytic filter. The filter has a cylindrical shape of 60.33 

cm of diameter and 40 cm of length.  

 

Figure 3.20 On the left the reactor plus the filtering system (in red); the electric ovens which heat up the 
filter are visible (placed inside them). On the right the catalytic filter. 

At the beginning, the filter was heated by means of an electric resistance rolled up around the filter 

and, in spite of a thick layer of Alumina wool around it, the temperature reached inside the filter 

was around 500°C. This temperature is not high enough because the dolomite is efficient in tar 

cracking for temperature above 700°C. The heating system has been replaced with two electric 

ovens and, in this way, it is possible to reach 800°C inside the filter. A series of experiments have 

been performed at the University of Stockholm, to test different type of catalyst for tar cracking 

(See chapter 5), while the efficiency of dolomite for H2S abatement has been tested in the 

laboratory at Mezzolombardo (Trento, Italy). As last step a SOFC stack have been connected to the 

gasifier and a few tests have been run coupling the gasifier with the fuel cells. The whole system is 

under a hood and the test can be controlled by an external pc to guarantee the safety of the 

operators. In figure 3.21 a picture of the entire system is reported. From the right is visible: the 
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steam generator plus the reactor (blue) and the feeding system above the reactor; the catalytic 

filtering part (green) and finally the fuel cells stack with all the controllers (red).  

 

Figure 3.21 The whole system as is visible today 

3.5.2 Experimental campaign and results 

A new experimental campaign has been run with this system. The experimental activity now 

focuses on the coupling of the gasifier with a fuel cell stack. Thus, the gasification conditions have 

been kept fixed at:  

� Gasification temperature: 800°C; 

� Steam to Carbon =2.5; 

� Steam temperature = 600°C; 

� Feeding rate = 2 kg h-1 (0.2 kg every 6 minutes) 

The modified system changes the gasifier from a semi-continuous to a continuous operative mode. 

The biomass and the char produced can be discharged at the same velocity and time. For a feeding 

rate of 2 kg h-1 a carbon residual of 0.35-0.4 kg h-1 has to be discharged. A new set of tests have 

been run with this new configuration summarized in table 3.14. 

The height of the bed is controlled by means of the middle or the deepest thermocouple. For 

instance, in figure 3.22 the temperature profile of one of the tests performed is reported (all the tests 

have been run at the same conditions). The black square underlines the heating up phase, the blue 

square indicates the gasification process, and the green square shows the cooling of the system. 

The temperature profile inside the reactor during the test differs completely from the previous 

configuration; the height of the biomass bed is kept constant and the deepest thermocouple remains 
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inside the bed. The temperature in the bed is, on average, 80-100°C lower then the reactor 

temperature measured by the highest thermocouple. 

Table 3.14 Test in the second phase of the experimental activity 

Test n° T reactor T steam SC Feeding Catalyst Gas analysis Fuel cell 
8 800°C 600°C 2.5 - - - - 
9 800°C 600°C 2.5 2 kg h-1 - H2,CO,CO2,CH2,C2H2,C2H4,C2H6 - 

10 800°C 600°C 2.5 2 kg h-1 - H2,CO,CO2,CH2,C2H2,C2H4,C2H6 - 
11 800°C 600°C 2.5 2 kg h-1 - H2S,CO,CO2,CH2,C2H2,C2H4,C2H6 - 
12 800°C 600°C 2.5 2 kg h-1 Yes H2S,CO,CO2,CH2,C2H2,C2H4,C2H6 - 
13 800°C 600°C 2.5 2 kg h-1 Yes H2S,CO,CO2,CH2,C2H2,C2H4,C2H6 - 
14 800°C 600°C 2.5 2 kg h-1 Yes - Yes 
15 800°C 600°C 2.5 2 kg h-1 Yes - Yes 

 

Figure 3.22 Temperature profile of one of the tests run with the continuous reactor 

In figure 3.23 the syngas composition of the test number 9 is reported. The syngas production 

(calculated, as before, knowing the nitrogen flux fed from the biomass hopper through the system) 

and composition remain almost stable during the whole test. 

The concentration of the gaseous species is slightly different from the previous tests; these 

variations are probably due to a more constant feeding and minor residence time of the gas inside 

the reactor. The gas composition measured by the GC, is: 

C2H2 (%) C2H4 (%) C2H6 (%) CH4 (%) CO (%) CO2 (%) H2 (%) O2 (%) 

0.01 0.01 0.5 6.6 12 29.3 51.4 0.1 

Respect to the first experimental results, the hydrogen concentration has decreased, and the methane 

and the carbon monoxide concentrations have risen. From the SOFC cell point of view the gas 

composition from the two systems are both suitable. In the first one, the hydrogen was higher 
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during the stable phase between two successive biomass loads, but not immediately after the 

feeding. This new configuration allows the production of a good quality gas, keeping almost 

constant operative conditions and gas production.  

 Figure 3.23 Syngas composition profile of the test number 9 

On average, the gas production is around 24 NL min-1 or, respect to the biomass fed 0.75 Nm3 kg-1  

pellets. The low heating value has been calculated on the average gas composition reported above, 

and it is around 8 MJ Nm-3.  

3.5.3 Hydrogen sulphide measurements 

A couple of tests have been carried out to measure the hydrogen sulphide which is the main 

problem for the fuel cells. Indeed, even if they can tolerate a certain level of tars in the gas, the H2S 

is a dangerous poison for the cell, and the tolerated concentration is lower than 10 ppm. The 

measures have been performed with the same gas chromatograph used for the syngas analysis, 

changing the gas carrier from Argon to Helium; the Helium allows to detect the hydrogen sulphide 

but not the hydrogen and vice versa: this means that the GC measures the concentration of CH4, 

CO, CO2, N2 and H2S. 

A first test without the catalyst has been run to measure the H2S produced by the gasification 

process.  

In figure 3.24 the temperature profile plus the hydrogen sulphide concentration is reported. For 

completeness, also the syngas composition has been reported (on the right). The hydrogen 

concentration, in this case, has been calculated for difference. A stop has occurred in the 

measurements system during the test. In this test, the reactor has been gradually filled up to the 

middle thermocouple, which is used to control the bed height. The H2S amount is between 20 and 
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70 ppm. The sulphur concentration in the biomass adopted is very low (less then 0.01% from the 

elemental composition), however the H2S produced is too high for a fuel cell.  
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Figure 3.24 Temperature and H2S concentration (left) and syngas composition (right) for test number 11 

Before running the test with the catalyst, the efficiency of the catalyst itself has been tested in the 

lab. The catalyst is a mixture of dolomite with a small fraction of manganese oxides. 

For the hydrogen sulphide abatement, several catalysts have already been proposed. At the moment, 

catalysts based on ZnO are commercially available but they are guarantee up to a temperature of 

450°C. Moreover the ZnO, in a reduction environment, turns in metallic Zn which evaporates at 

600°C. For process temperature between 600 and 1000°C several catalysts are under investigation, 

but nothing is still available for industrial and commercial applications. One of the main problems 

for the catalytic abatement of H2S at high temperature is the regeneration time of the catalyst, which 

is usually greater than the deactivation time due to the catalyst saturation.  

In this project a mixed catalyst of dolomite and manganese oxides have been tested. Dolomite and 

manganese oxides have separately show their efficiency in H2S adsorption [Ko,2005], [Atimtay 

1993]. Two tests have been done at 600°C. In the first one a mixture of H2 (99.9%) and H2S (0.1%) 

has been used. In the first test the catalyst has shown a high efficiency for 40 minutes (figure 3.25). 

This is a positive results considering that the sample of catalyst tested is very small (1 g) and the 

flux of hydrogen and sulphide acid has been changed from 40 to 60 to 200 NmL min-1. From the lab 

tests, has been also noticed that the manganese oxides have a regeneration time comparable to the 

saturation time, instead the dolomite is harder to regenerate. For the second test, an artificial syngas 

has been used with the following composition: 49% of H2, 28.7% of N2, 7.24% of CO2, 13% of CO, 

2% of CH4 and 342 ppm of H2S. The total flux is kept constant at 107 NmL min-1 (figure 3.26). In 

this second case, the catalyst has shown longer performance, since the amount of H2S in the 

mixtures was lower than before. The hydrogen sulphide has been completely removed for the first 

80 minutes and than the level of H2S on the gas has been kept around 12-13 ppm for 40 minutes 

more. Once the catalyst is poisoned, its efficiency rapidly decreases. 
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Figure 3.25 First lab test to verify the catalyst efficiency for H2S abatement 

 

 

 

 

 

 

 

 

Figure 3.26 Second lab tests to verify the catalyst efficiency for H2S abatement 

The catalyst tested has shown promising results. Good performance are expected using the catalyst 

in the gasifier considering that, in the lab tests, the amount of catalyst was very small and that the 

H2S content in the experimental syngas is lower than the concentration used in the lab (it ranges 

between 20 and 70 ppm, from test 11).  

The gasification tests number 12 and 13 have been run with the presence of the catalyst. The 

catalytic filter has been filled with a mixture of calcined dolomite (300 g) and 300 g of silica 

support impregnated with manganese oxides.  

In figure 3.27 the results of the first gasification test run with the catalyst are reported. On the left it 

is possible to see the temperature profile and on the right the syngas composition. On both charts, 

the hydrogen sulphide concentration has been reported. The reactor has been filled with char before 

the heating up of the system to verify the correct functionality even if the bed is controlled by the 

highest thermocouple (number 1). The beginning of the test can be seen from the first decreasing of 

temperature registered by the thermocouple (minute 179). The H2S concentration starts from zero in 
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the first 10 minutes but then rises up to almost 100 ppm. Then the hydrogen sulphide ranges from 

30 to 90 ppm. It is clear that the filter is not working properly except for the first 10 minutes. The 

main reasons are the low temperature inside the filter (around 500°C).  

Figure 3.27 Gasification test with dolomite as catalyst 

As said before, the dolomite is efficient in tar cracking for temperature above 700°C and, for H2S, 

abatement a minimum temperature of 600°C should be reached. After the test the filter has been 

opened and, as shown in figure 3.28, the part of the catalyst closer to the syngas gasifier exit, has 

changed its colour from beige/white in grey/black. Instead, the final part of the catalyst, has kept 

almost its original colour (beige/white). When the catalyst works, it changes its colour in 

grey/black. This means that only a small fraction of the catalyst has worked. It has been also noticed 

that the connection tube between the gasifier and the catalyst was almost full of char.  

 

Figure 3.28 Catalyst after the test at the beginning (left) and at the end of the filter (centre), the connection 
tube full of char (right) 

A further test (test number 13) has been run at the same condition of this one, to confirm or 

contradict the observed results. The H2S concentration of test number 13 is reported in figure 3.29. 

In this test, the reactor has been completely emptied before the test, to avoid possible problem of 

back pressure due to char deposit. The biomass feeding started at minute 170 (the beginning of x-

axis); the load is not immediately seen by the thermocouples because the reactor was completely 
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emptied, thus some minutes occurred for the growing of the biomass bed up to the deepest 

thermocouple which, in this test, has been used to control the bed height. From the hydrogen 

sulphide measurements, it can be seen that the catalyst has a good efficiency only at the beginning 

of the test. After the first ten minutes the H2S concentration ranges between 10 and 30 ppm (anyway 

a lower concentration respect to the one measured in the test run without catalyst).  

Figure 3.29 Gasification test with dolomite as catalyst 

The average syngas composition measured (dry basis) is:  

C2H2 (%) C2H4 (%) C2H6 (%) CH4 (%) CO (%) CO2 (%) H2 (%) O2 (%) 

0.06 - 0.99 8.39 20.89 28.77 40.37 0.53 

With respect to the previous test, the filter seems to work partially, even if the level of hydrogen 

sulphide is still high to feed, for a long period, a SOFC stack. Anyway, the catalytic filter is 

working at too low temperature to be efficient in tar and hydrogen sulphide abatement. 

After these three tests to measure the hydrogen sulphide and to test the catalyst, a first test coupling 

a SOFC stack with the gasifier has been done. The test has shown that the level of gas cleaning has 

to be improved because the SOFC stack gave up working in short time. Once open the stack, it has 

shown several point of carbon and tar deposition. Thus the heating system of the catalytic filter has 

been removed. The electric resistance has been changed with two electric ovens, able to keep the 

filter at 800°C.  

3.5.4 Carbon and energy balance 

For the test performed in this second experimental phase the carbon and energy balance has been 

estimated, as in the previous tests. 

The carbon balance has been calculated, as before, knowing the moles of carbon fed, and the moles 

of carbon in gas and in solid phase. On average, 58% of the initial carbon moles exit from the 
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balance has been closed with and error of +/- 5%. As previously, the input and output energy fluxes 

have been considered and the overall system efficiency is around 45-50%.  

A test with the empty reactor has been done to measure the system performances without the 

gasification process. For 30 minutes the consumptions of the empty system have been recorded. 

Then for 60 minutes the consumptions to keep the reactor at 800°C feeding only steam at 600°C 

have been measured. The average values are reported in table 3.15.  

Looking at the data collected, 3.43 kW are needed to keep the reactor at 800°C. When the steam is 

fed at 600°C more energy is required to heat the steam up to 800°C: 4.47 kW. During the 

gasification process some of the reactions are endothermic and other exothermic; the need of energy 

during the steam gasification tests is approximately the same then when only steam is added. 

Table 3.15 Energy consumption of the empty and working gasification system 

Time M1 (kW) M2 (kW) M3 (kW) M4 (kW) Steam generator (kW) Ovens (kW) 
No steam, no biomass 

5 min 4.80 2.76 0.00 1.20 0.84 3.96 
10 min 4.44 2.64 0.00 0.00 1.8 2.64 
15 min 4.44 2.76 0.00 0.00 1.68 2.76 
20 min 4.44 2.76 0.00 1.20 0.48 3.96 
25 min 4.56 2.64 0.00 1.20 0.72 3.84 
30 min 4.44 2.76 0.00 1.20 0.48 3.96 
average 4.54 2.71 0.00 0.72 1.10 3.43 

Steam (3.6 kg h
-1

) and no biomass 

5 min 9.36 2.64 1.2 0 3.84 5.52 
10 min 9.12 2.64 0 1.2 3.84 5.28 
15 min 7.8 2.64 1.2 1.2 5.04 2.76 
20 min 8.04 2.52 0 1.2 3.72 4.32 
25 min 8.4 2.64 0 0 2.64 5.76 
30 min 8.28 2.64 1.2 1.2 5.04 3.24 
60 min 8.34 2.6 0.4 0.8 3.80 4.54 
average 8.48 2.62 0.57 0.80 3.99 4.47 

Steam (3.6 kg h
-1

) and biomass (2kg h
-1

= 200gr every 6 minutes) 

start 5.2 3 0 0 2.2 3 
6 min 5.6 3.1 1 1 0.5 5.1 
6 min 8.6 3.1 0 0 5.5 3.1 
6 min 10.1 3.2 1 1 4.9 5.2 
6 min 9.7 3.1 1 1 4.6 5.1 
6 min 6 2.9 0 0 3.1 2.9 
6 min 5.1 3 1 1 0.1 5 
6 min 7.3 3 1 1 2.3 5 
6 min 9.8 2.9 1 1 4.9 4.9 
6 min 6.1 2.8 1 1 1.3 4.8 
6 min 12.6 2.9 1 1 7.7 4.9 
average 7.83 3.00 0.73 0.73 3.37 4.45 
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3.6 Gasifier coupled with a SOFC stack 

At last, two of the preliminary tests performed coupling the system with a SOFC stack are here 

reported (number 14 and 15). In the test number 14 the gasifier has been coupled with a stack of 18 

fuel cells. The nominal overall power is 250 W. In the test number 15 the gasifier has been coupled 

with a stack of 24 fuel cells for a global nominal power of 330 W. 

The SOFCs have to work at high temperatures since their components are made of materials that 

became active at high temperature (electrically and as ions carrier). They have to be heated up to 

600-1000°C. In a fuel cell the anode is where the oxidation reactions occur, and is the positive pole, 

instead in the cathode is the negative pole, where the reduction occurs.  

The reactions which occur in a fuel cell working with syngas are:  

Anode reactions:      

−= +→+ eOHOH 222                                                         (3.9) 

−= +→+ eCOOCO 22                                                       (3.10) 

Cathode reaction:           

=− →+ OeO 22
1

2                                                             (3.11) 

Overall reactions 

OHOH 222 21 →+                                                           (3.12) 

2221 COOCO →+                                                           (3.13) 

In addition, considering that the syngas has also a percentage of methane, the oxidation and 

reforming of methane may also take place in the anode, using the available water. 

       2224 22 COOHOCH +→+                                                    (3.14) 

                2224 82 COHOHCH +→+                                                    (3.15) 

For every mole of hydrogen one half mole of oxygen is needed for the fuel cell reaction, supplying 

2 ions and 4 electrons. Likewise, combining the steam reforming and methane oxidation reaction, 

each mole of methane requires 2 moles of oxygen. It is then possible to calculate the number of 

oxygen moles required for 100% fuel utilization in the fuel cell: 

                    Mol of O2 = 0.5 (mol of H2) + 0.5(mol of CO) + 2 (mol of CH4)                       (3.16) 
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Considering the syngas composition and production measured during the experimental activity, the 

moles per hour yield are: H2 = 31.6 mol h-1; CO=7.42 mol h-1; CH4=3.9 mol h-1; CO2=17.3  mol h-1, 

for a feeding rate of 2 kg h-1. From the formula (3.16) the numbers of moles of oxygen needed for 

the full fuel utilization are 27.34 mol h-1 that means 0.66 Nm3 h-1of oxygen or 3.2 Nm3 h-1 air. 

The maximum attainable performance of the SOFC stack operating with the experimental syngas of 

the gasifier have been estimated using the Design performance data provided by Sofcpower (a local 

Fuel Cells production company) where this project has been developed. The stack is designed to 

have an efficiency of 45% (on the fuel LHV) at 70% of the fuel utilization. This fuel cell stack 

should achieve an areal power density of 0.3 W cm-2 of active area at a cell potential of 0.7 volts 

and a current density of 0.428 A cm-2. The active area is 50 cm2. 

The total stack current at design conditions is then: 

( ) Acm
cm

A
areaactivedensityCurrent 4.2150428.0 2

2 =







=⋅                (3.17) 

Then, using this current, we estimate the required voltage of a 250 W stack: 

V
A

W

currentstacktotal

powerstack
69.11

4.21

250
=








=              (3.18) 

Using the designed potential of 0.7Volts/cell, the minimum number of cells is calculated as: 

        cells
cellV

V

celltheofpotential

voltagetotal
6.16

/7.0

69.11
=








=                (3.19) 

A cells stack is composed by several cluster of cells. Each cluster is composed by 6 cells. Thus, a 

stack of 3 cluster for a total of 18 cells has been assembled. 

To examine if the current capacity of the gasifier is sufficient to supply fuel to a 250 W fuel cells 

stack, the assumption that each mole of oxygen supply two O= for ion conduction, and four 

electrons for electronic conduction is made. Considering a fuel utilization of 70 % the current 

capacity is:  

( ) ( ) AsC
cellss

h
F

O

e

h

molO
9.1139.113

18

1

3600
7.0

4
34.27 1

2
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
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
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





 −
−

            (3.20) 

Where F is the Faraday constant = 96485 C/mol. 

Since 113 is higher then the design current of 21.4 A, the fuel is widely more than the fuel needed 

for the stack.  It is also possible to examine the reaction enthalpy of the fuel cell to determine the 

excess of energy produced. Considering the reaction enthalpy of the reactions (3.12), (3.13), (3.14) 

and the syngas moles in input the whole reaction enthalpy is around -11755 kJ per hour, 
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corresponding to an input power of 3.26 kW. For an output power of 250 W, and considering that 

the cell has a fuel utilization of 70%, the percentage of the syngas potential energy available utilized 

by the stack is: 

                   %10
7.026.3

25.0
=

⋅
==

kW

kW

Power

Power

in

outη                                        (3.21) 

The maximum heat available for thermal integration is then 3.26 kW-0.25 kW = 3 kW. This heat 

can be used to generate superheated steam, or to heat the inlet air and supply heat to the gasification 

process. The same calculations have been performed for the stack of 24 cells. The current capacity 

is 85.48 A (greater then 21.4 A) and for a nominal output of 333 W, 14.5% of the fuel energy is 

utilized in the stack.  

The temperatures in input and output of the fuel and of the air of test number 14 are shown in figure 

3.30. The temperatures of the three clusters of the stack (6 cells for each cluster) are also reported. 

In figure 3.31 the current (A), the voltage (V) and the power (W) produced by the stack during the 

gasification test are reported.  

Figure 3.30 Air and fuel temperature (left) and temperature of the three modules (right)  
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Figure 3.31 Voltage, current and power of the cells stack 
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The performance of the stack has not been constant. It has worked for approximately 80 minutes. 

Then the test has been stopped due to the poisoning of the cells. There has been a peak of power 

production of 65 W, after a period of increasing and decreasing of the power. Finally, for 20 

minutes before the switching off, an almost stable period of operation has been registered, with a 

power production of 30-35 W. Considering that the nominal power of the stack is 250W (using pure 

hydrogen as fuel) the stack has worked, at 18% of its nominal power (considering the performance 

of the more reliable stable period). During the initial peak of production, the stack has worked at 

24% of its nominal power, even if for a brief period.  

In the last test (number 15) a stack of 24 cells has been coupled with the gasifier (4 clusters) for a 

nominal power of 333 W. In figure 3.32 the temperature profile inside the reactor is reported (left). 

As can be seen the bed height was controlled by the deepest thermocouple for 30 minutes (red dots), 

and then from the middle one (grey dots). In the same figure (right) the temperature of the syngas 

and air in input and output are shown. The stacks temperatures were between 800 and 1000°C for 3 

of the 4 modules, instead one could reach only 400°C due to a problem of the cells module. It is 

important to consider that the fuel cells tested are prototypes of the local industry Sofcpower, thus 

some problems linked to the non-correct operation of the SOFCs can occur during the gasification 

tests.  
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Figure 3.32 Temperature profile of the gasification reactor (left), temperature of the inlet and outlet air and 
syngas (right) 

In figure 3.33 the power generated by the SOFC stack is shown. In the first phase 60 W have been 

generated for approximately 10 minutes, then the stack performance has rapidly decreased. The 

feeding of the syngas has been stopped for 10 minutes to clean the SOFCs with the so colled 

“forming gas” (nitrogen with 5% of hydrogen). In the second part of the tests 130 W have been 

produced for 15 minutes. Then the SOFCs performance has decreased again and test has been 

stopped. In this test, the cell efficiency has been of 18% during the first phase (60 W produced) and 

40 % during the second phase (130-140 W produced).  
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Figure 3.33 Power generation by the SOFC stack during test number 15 
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Chapter 4  

 

Modelling activity 

 

4.1 Introduction 

In this chapter, the data collected during the experimental activity described in chapter 3, have been 

compared with the outputs of the thermodynamic equilibrium model described in chapter 3.2 and 

used in the preliminary phase of this project. The agreement between the experimental data and the 

outputs of the thermodynamic model is not satisfying. The model needs to be tuned up by means of 

experimental correlations. For this reason a simpler non-stoichiometric model that can be easily 

manipulate and adjusted according to the experimental data, has bee built. The new model has been 

tested and than modified in a quasi-equilibrium model. A satisfactory agreement has been observed 

between the modified model and the experimental data.  In a second moment, the modifications 

have been applied also the the 2 phase, stoichiometric, equilibrium model. Finally, the temperature 

profile registered by the thermocouples placed inside the reactor described in the previous chapter, 

has been used to estimate the thermal conductivity coefficient of the biomass. The value found has 

been used to calibrate a 2D finite element model to simulate the temperature profile inside the 

reactor. Thanks to these two models, linked together, the temperature and gas composition inside 

the reactor have been modelled. 

4.2 Model versus experimental results 

4.2.1 Comparison of the syngas composition 

A thermodynamic modeling approach allows the simulation of the gasification process at different 

temperature and SC values. In the first experimental campaign, the gasification tests have been run 

at 700 and 800°C for SC values equal 2 and 3.  

In figure 4.1 the output of the stoichiometric equilibrium model for SC=2 and SC=3 at different 

temperature is reported.  

In table 4.1 the average concentration of the four main gaseous compounds of the first seven tests 

are summarized. As can be seen, the hydrogen concentration is well predicted by the model, instead 

the CO is overestimated and the CO2 underestimated. The predicted methane concentration is close 

to zero since it is not an equilibrium compound; anyway, the methane concentration in the syngas 

yield is quite low, because the residence time inside the reactor is long enough to reach almost 

equilibrium condition.  
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Figure 4.1 Output of the thermodynamic equilibrium model for SC=2 and SC=3 

Table 4.1 Average composition of the syngas yield during the first set of tests 

Test number 

SC 

 

CH4  

% vol 

CO  

% vol 

CO2 

 % vol 

H2 

 % vol 

1 2 1.3 4.2 29.2 63.4 
2 2 1.5 7.0 28.2 63.1 
3 3 1.4 3.7 30.0 64.9 
4 2 1.9 6.6 27.2 64.3 
5 2 2.9 3.6 30.4 63.0 
6 3 2.9 3.6 30.4 63.0 
7 3 3.5 4.0 28.4 64.0 

The average syngas composition measured in the tests of the second experimental campaign (with 

the continuous configuration of the gasifier) is composed by hydrogen at 51%, CO at 12%, CO2 at 

29-30% and CH4 at 6.5%. As noticed in the previous chapter, the continuous configuration of the 

gasifier reduces the residence time inside the reactor. Indeed the hydrogen concentration is lower 

and methane is higher respect to the model previsions. A better agreement exist between the 

measured carbon monoxide concentration and the predicted one, instead the carbon dioxide is still 

underestimated by the model.  

The model, on the basis of the predicted syngas composition, calculates also the syngas low heating 

value.  

The low heating value of the gas produced during the experimental tests is around 8 MJ Nm-3 both 

for the test performed at 700 and 800°C. Even if the gas composition is not predicted with good 

accuracy by the model, the correspondence between the predicted heating value and the 

experimental one is satisfying. 

The model, as shown in chapter 3.2, is a two-phase model and, for SC values greater then 1.5, the 

model shows a complete conversion of biomass into syngas without any solid carbon formation 

(figure 3.4). In practice, during the experimental activity, a remarkable carbon formation has been 

measured (around 18-20% of the initial biomass weight). The carbon formation is quite common in 

fixed bed reactors due to the difficulties in mixing the solid biomass with the fluidizing agent; 
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instead, a very low carbon formation is usually measured for fluidized bed reactors which assure 

excellent mixing conditions and heat transfer. The particular type of feedstock chosen (pellets) due 

to its high density and low moisture, could be also a cause of the high solid residue.   

Figure 4.2 Syngas low heating value predicted by the model 

4.2.3 Comparison: energy consumption 

Thanks to the data collected by the energy meters, the comparison between the measured 

consumption and the theoretical one has been possible. The energy needed to produce superheated 

steam has been calculated according to the following scheme:  

 

 

 

 

Figure 4.3 Energy needed for the steam generation. 

State 1 to 2: water at 20°C to water at 100°C (saturated liquid); 

State 2 to 3: saturated liquid to saturated vapour at 100°C; 

State 3 to 4: saturated vapour at 100°C to superheated vapour at 400°C or 600°C.   

 

From the theoretical calculation, the power needed for the steam generator and the super heater is 

reported in figure 4.4 (left). In figure 4.4 (right) the comparison between the calculated (lines) and 

the measured data (points) can be seen. The efficiency of the steam generator and super heater 

system is considered 75%. The measured values are close to the calculated ones.  
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Figure 4.4 Theoretical estimation of the energy needed for the steam generator (left, in kWh) and 
comparison with the experimental value (right, in kW) 

A subroutine of the two-phase thermodynamic model is dedicated to the analysis of the energy 

balance of the process to estimate the energy needed by the reactor. Two cases have been analyzed 

in the model:  

� the reactor is externally heated: the whole enthalpy needed for the conversion process is 

provided as heat; 

� part of the enthalpy needed is provided by the gasifying agent fed at high temperature, and 

the rest is provided externally.  

The reactor tested is heated both externally and by means of steam fed at high temperature. Thus, 

the energy consumption measured during the experimental activity has been compared with the 

model results of the second case. The model simulations are reported in figure 4.5 considering 

different temperature of the gasifying medium: 100°C - 300°C - 600°C. The calculations are based 

on a feeding rate of 2.5kg h-1 and a gasification temperature of 800°C. The charts show that the 

higher is the steam to carbon value and the gasification temperature the higher is the energy 

required. However, increasing the steam temperature, the energy needed is less influenced by the 

amount of gasifying agent fed. Considering the experimental measurements for the tests run with a 

feeding rate of 2 kg h-1 and steam temperature of 600°C, the energy required by the ovens was, on 

average, 3.75 kW with ovens efficiency between 70-75%. The calculated values are close to the real 

one.  
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Figure 4.5 Energy needed by the system considering a gasification temperature of 800°C and different SC 
and steam temperature values: 100°C, 300°C and 600°C. [Baratieri, 2007] 
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The satisfying agreement between the calculated and the experimental data allows considering the 

present approach as reliable for the calculation of the energy required by the system during the 

reactors planning and designing. In this way, also alternative heating system can be considered, i.e. 

burning a fraction of the syngas produced or the residual char. In the tested gasifier, the char 

production is around 18-20% of the biomass fed. This means that for a feeding rate of 2kg h-1 there 

is a char formation of 0.36-0.4 kg h-1. The char is carbon at 99% (measured during the experimental 

activity) and the carbon heating value is around 32 MJ kg-1, thus, burning the char, 3.5kWh can be 

produced. The re-utilization of the char formed, theoretically, will drastically reduce the needed of 

the external electric energy.  

4.3 Non Stoichiometric model 

The deviation between the experimental data and the stoichiometric equilibrium model shows that 

the model needs to be tuned up by means of experimental correlations to improve the accuracy of 

the syngas composition predictions. A simpler non-stoichiometric equilibrium model, that can be 

easily modified, has been built. The 2-phase stoichiometric model has been used to verify the output 

of this new simpler model; the two models are both based on the Free Energy Minimization 

principles and they should return the same results.  

The code is a one-phase model developed under the hypothesis that the biomass is composed only 

by C, H and O; S and N are considered negligible. Moreover, the model assumes that in the syngas 

produced five species can be formed: carbon monoxide, carbon dioxide, hydrogen, water and 

methane. The nitrogen is present only if air is used as gasifying agent. The code has been written in 

Matlab environment and the NASA [McBride,1993] databases have been used to evaluate the 

thermodynamic properties of the chemical species considered in the model. 

The input data for the model are the gasification temperature and pressure, the ER or SC value 

(according to the gasifying agent), the input vector with the initial number of moles ([nC, nH, nO]). 

Starting from the moles of C, H, O in the biomass chosen (known from the elemental analysis) and 

the amount of O2 or H2O added to the process, an initial gaseous mixture of CO, CH4, H2O, CO2 

and H2 is guessed. The considered initial gaseous mixture respects the mass conservation constraint. 

The gasification products are modelled as a gaseous mixture (homogeneous phase) that represents 

the syngas. In output, the model returns the molar fraction of the gaseous compounds considered 

(CO, CO2, CH4, H2O and H2). 

In the non-stoichiometric model, the minimization procedure applied to the (L) “Lagrangian” 

function (4.2) implies the computation of its partial derivatives with respect to the ni mole number 

and gives the equilibrium condition (4.3), obtaining also the generic equation for the i-th component 

(4.4). 
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By means of this procedure, it is possible to individuate N equations (one for each compound) that 

have to be solved simultaneously with the equations arising from the mass balance of the system. 

The unknowns are the ni coefficients and the Lagrange multipliers. The obtained system is non-

linear and it has been solved using the Newton-Raphson algorithm [Press,2007]. This method can 

be applied successfully if the initial values guessed for the unknowns are close to the final values. In 

this specific case, five unknowns are the molar fractions which surely range between 0 and 1, and 

one is the total number of moles, which is not far from the initial number of moles. For the other 

unknowns a first guess is made considering the typical syngas composition. Specific controls to 

guarantee the non-singularity of the Jacobian matrix and to avoid complex number are included.  

In the 1-phase equilibrium model developed in the present work, the residual solid fraction has not 

taken into account. The moles of carbon in the feedstock are considered completely converted in 

gas (mainly in CO and CO2).  

4.3.1 Testing the model 

The model has been tested with the data collected from a series of tests performed by Li et al. [Li, 

2004]. Li et al. run several gasification tests in a CFB gasifier with both coal and biomass. The 

parameters and the experimental gas composition of some of the tests analyzed are reported in table 

4.2. 

Table 4.2 Syngas composition (case1-4): experimental data from a pilot CFB plant [Li et al. 2004]. 

Case number   1 2 4 5 6 

Biomass   Coal coal hemlock hemlock hemlock 

Pressure Bar 1.6 1.65 1.19 1.19 1.19 
Temperature °C 810 780 815 772 787 
Air / Biomass ratio kg/kg 0.37 0.32 0.39 0.52 2.08 
Steam / Biomass ratio kg/kg - - - 0.02 0.22 

Measured dry gas composition- molar fraction 

H2 % 10.4 13.0 3.0 4.0 3.8 
CO % 8.2 12.6 9.6 14.7 12.6 
CO2 % 16.3 13.5 17.1 16.5 15.7 
CH4 % 0.5 0.8 1.9 2.9 2.7 
N2 % 64.1 55.6 68.4 61.8 65.2 
Elemental composition 

Coal (moisture:9%) C:57.2 H:3.3 O:16.2 N:0.7 S:0.2 Ash:13.4 
Hemlock (moisture 9.7%) C:51.8 H:6.2 O:40.6 N:0.6 S:0.38 Ash:0.40 
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Both the models have been used to simulate the tests reported. In figure 4.6 the results for test 

number 1 and 2 and in figure 4.7 the results for test number 3 and 4 are reported. 

Figure 4.6 Comparison for Stoichiometric and non stoichiometric model for test number 1 and 2 

 Figure 4.7 Comparison for Stoichiometric and non stoichiometric model for test number 3 and 4 

From the comparison it can be seen that the two models return similar results. The slight differences 

between the predicted gas compositions can be due to the fact that the non-stoichiometric model is 

simpler and take into account only the C, H and O in input and five gaseous species in output. This 

model has been used to predict the syngas composition in the test run at the University of 

Stockholm (see chapter 5).  

4.4 Quasi equilibrium model 

Once verified the correspondence of the two models the cause of the non-total agreement between 

the predicted and the experimental data could be reconducted to the hypothesis under which the 

model works: the residence time in the reactor is long enough to reach equilibrium conditions. The 

models do not take into account that the kinetic and/or mass transfer influences real processes in a 

way that some elements never achieve the equilibrium. Many authors propose different methods in 

order to achieve a better agreement between model prediction and experimental data. A possible 
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approach is the application of empirical parameters in order to modify the carbon conversion or to 

correct directly the methane fraction in the syngas. 

The high percentage of the residual fraction formed during the gasification process contains 

approximately 40% of the initial moles of carbon. These moles, which remain in solid phase, do not 

participate in carbon monoxide, methane and carbon dioxide formation. The model has been tuned 

according to the experimental data to take into account the residual solid phase and the methane 

production. The carbon conversion efficiency (i.e., the ratio between the number of carbon moles 

converted in gas and the total carbon moles fed) has been calculated:  

      
fed

gas

c
C

C
=η                 (4.4) 

Then the initial input vector of the model has been modified according to the ηc value. 

       ],,[],,[ 10
OHCCinputOHCinput nnnNnnnN η=⇒=               (4.5) 

The carbon conversion efficiency has been applied first to the non-stoichiometric and then to the 

stoichiometric model. In figure 4.8 and 4.9 the data collected during the first experimental 

campaign for SC=2 and 3 and gasification temperature of 700 and 800°C have been compared with 

the results of the quasi-equilibrium model. Now the carbon monoxide and dioxide concentration 

show a good agreement with the experimental data.  

Figure 4.8 Comparison between the experimental data and the modified model for SC=2 

As previously underlined, in the first part of the experimental activity, the methane production was 

very low, due to the high residence time. Instead, in the second part, a methane production of 6-7% 

has been measured. It is known that correct methane estimation by means of a thermodynamic 

model is a difficult task, since it is not an equilibrium compound [Linanki, 2001], [Prins, 2007].  
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Figure 4.9 Comparison between the experimental data and the modified model for SC=3 

In fact, the model does not predict the moles of carbon and hydrogen converted in methane, and this 

means an overestimation of hydrogen and carbon monoxide. Then, to consider also this non-

equilibrium compound, a second modification has been applied to the model. The experimental gas 

composition has been used to evaluate the moles of carbon (n1) and hydrogen (n2) converted into 

CH4 during the process; the initial composition is corrected considering the ηc and subtracting the 

moles of C and H arising from the previous calculation. 

    ⇒=⇒= ],,[],,[ 10
OHCCinputOHCinput nnnNnnnN η [ ]*

1 2, ,input c C H ON n n n n nη= − −            (4.6) 

The results of this second modification (MOD2) compared with the experimental data of the second 

part of the experimental activity are shown in figure 4.10.  

Figure 4.10 Comparison between the experimental data and the modified model for SC=3. MOD1 is the 
model modified with the ηc parameter, and the MOD2 includes also the n1,n2 parameters. 
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The agreement between the experimental and the modelling data, considering the carbon conversion 

parameter (output of MOD1), has improved remarkably. However, to have a better correspondence, 

is necessary to also estimate the methane concentration, as clearly the output of the MOD2 shows. 

The experimental activity performed by means of this gasifier has not investigate a range of 

temperature and SC values wide enough to find out experimental correlation to estimate the 

methane and carbon conversion, as a function of the temperature or of the SC value. However, for 

extensive experimental campaigns found in the literature, it has been possible to find out 

experimental correlation, i.e. between the carbon conversion and the ER value [Li, 2001]. From one 

side the use of empirical correlation limits the predictive capability of the model to a specific 

reactor type and design; however, from the other side, the quasi equilibrium model becomes a 

useful instrument to know the gas composition and production with good accuracy for gasifier with 

similar configuration. 

4.5 2D finite element model 

For the purpose of the design of the gasifier a 2D finite element model has been built using a 

commercial software (Comsol Multiphysics ) to integrate the thermodynamic analysis of the 

reactor.  

The temperature field is calculated by means of the finite element method. The reactor has been 

modelled in a two dimensions domain and due to the axial symmetry of the reactor, only one side 

has been considered (Figure 4.11).  

Figure 4.10 Reactor scheme used in the finite element model [Baratieri, 2007]. 

The software, uses the heat source calculated by the thermodynamic model as input, and solves two 

differential equations: the heat diffusion (4.8) and the Eulero equation (4.9) in stationary mode. 
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Since the simulated gasifier has a fixed bed configuration, the biomass is supposed to pass through 

the reactor at low velocity. 

( ) ( )THT −=∇∇ λ                  (4.7) 

( ) puu −∇=∇ρ                   (4.8) 

The following boundary conditions have been imposed for the solution of the heat equation: 

o Fixed temperature on the external wall: Twall  

o Adiabatic conditions on the top and the bottom surface of the reactor 

o Steam temperature on the internal wall: Tsteam.  

In the first iteration, the steam temperature is constant along the vertical axis; then, from the heat 

fluxes calculated by the model, the vertical temperature profile is re-calculated and utilized for the 

second iteration. The simulation stops when the difference of steam temperature between two 

successive iterations is smaller than a fixed tolerance.  

For the Eulero equations the boundary conditions are: 

o Symmetry on the central axis 

o Slip condition on the reactor surface 

o Biomass input velocity on the inlet section and atmospheric pressure on the outlet section. 

The heat source is function of the temperature, the SC and of the biomass treated. The heat source is 

calculated according to the equation (4.10).  
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)()( ⋅−−=⋅∆=               (4.9) 

Where mb is the feeding rate (kg s-1) and Vb the volume of the biomass treated. The ∆H is calculated 

with equation 4.11 and the values of A, B, C are listed in table 4.3.  

CTBTATH +⋅+⋅=∆ 2)(                     (4.10) 

Table 4.3 Values of A, B, C for the calculation of the heat source at different steam temperature 

  SC=0 SC=1 SC=2 SC=3 

T steam 200°C A -4.00E-06 -6.00E-06 -4.00E-06 -3.00E-06 

 B 0.011 0.0151 0.01808 0.008 

 C -6.16011 -7.7242 -5.2391 -3.6418 

T steam 400°C A -4.00E-06 -6.00E-06 -4.00E-06 -3.00E-06 

 B 0.011 0.0151 0.01808 0.008 

 C -6.16011 -7.8083 -5.3781 -3.8626 
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T steam 600°C A -4.00E-06 -6.00E-06 -4.00E-06 -3.00E-06 

 B 0.011 0.0151 0.01808 0.008 

 C -6.16011 -7.8845 -5.5208 -4.0967 

The reactor has been divided in 10 elements along the z axis. Every element is 48 mm high. At 

every step, the finite element model calculates the radial temperature profile. This profile is used to 

estimate the syngas composition at each step by means of the equilibrium thermodynamic model. 

The thermodynamic model calculates also, at each step, a correction parameter (βi), which represent 

the biomass converted in syngas (4.11). The βi is function of the net power available for the process 

(calculated by the finite element model) and the integral average of the enthalpy variation during 

the conversion process, which is function of the radial coordinate due to the dependency with the 

process temperature (the radial temperature profile is calculated, at each step, by the finite element 

model). 
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This parameter is used to recalculate, every time, the heat source (4.12) and the biomass properties 

(porosity φ (4.13), density ρ (4.14), specific heat cp (4.15), thermal conductivity λ (4.16)), 

considering the conversion in gas and char along the reactor [Baratieri, 2007].  
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1              (4.12) 

( )ξφφ +⋅= 1oi                (4.13) 

( ) bigii ρφρφρ ⋅−+⋅=+ 11              (4.14) 

( )
bgi pipip ccc ⋅−+⋅=

+
φφ 1

1
             (4.15) 

( ) bigii λφλφλ ⋅−+⋅=+ 11              (4.16) 

As initial values the following data has been used for the mass of pellets fed: porosity 0.49, density 

1150- 1400 kg m-3, bulk density 600-650kg m-3, thermal conductivity 0.27 W m-1K-1, and specific 

heat 2380 J kg-1 K-1. The physical properties vary considerably with the porosity, as shown in figure 

4.11. 
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Figure 4.11 biomass physical properties versus biomass porosity [Baratieri,2007]  

The 2D finite element model provides the radial temperature profile for each of the ten elements in 

which the reactor has been divided. Here the results for the simulation run at gasification 

temperature of 800°C, steam temperature of 600°C and SC values of 2.5 are reported. The feeding 

rate considered is 2 kg h-1.  

In figure 4.12 (left) the radial temperature profile simulated for the ten steps are reported. The x-

axis starts from 16 mm, which is the distance of the external cylinder from the central axis of 

symmetry. From the model, the temperature inside the reactor is around 500-600°C. Looking back 

to the temperature profile measured during the experimental tests (chapter 3) the temperatures 

registered by the three thermocouples placed inside the reactor, at different radial position and 

height, are around 700 and 800°C. A difference of 200°C exists between the predicted and the 

measured data. 

 Figure 4.12 Reactor temperature profile simulated by the finite element model  
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 The syngas composition at different steps, calculated by means of the thermodynamic model is 

reported in figure 4.13 (step 1, step 3, step 5, step 10). The theoretical evolution of the gas 

composition inside the reactor can be seen.  

 Figure 4.13 Evolution of the gas composition in the 2D reactor estimated with the original thermodynamic 
model [Baratieri, 2007]  

4.5.1 Estimation of thermal conductivity 

The finite element model takes into account only the heat transfer for conduction. However, the 

differences found between the experimental data and the model outputs, have underlined that heat 

exchanges through radiation and convection phenomena are not negligible. Therefore, the 

experimental data have been used to tune up the finite element model. 

Instead of studying a complex problem considering the heat transfer for radiation and convection, 

the idea has been to go on considering only the conduction heat transfer but to estimate an a new 

thermal conductivity by means of the experimental data, which should include the contribution of 

the convection and radiation (we have called it “apparent thermal conductivity”) . For this purpose, 

the Fourier equation for heat conduction (4.16) in one-dimensional case (4.17) has been used. The 

bed of biomass has been considered as a 1 dimensional body at uniform and initial temperature Ti 

dipped, at time τ=0, in a field at constant temperature T0 (T0=gasification temperature) (4.18). 
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Boundary conditions    ( ) ( ) 0,0 0,iT x T T Tτ= =              (4.18) 

To solve the problem of heat conduction in a semi-infinite solid body, the heat equation can be 

rewritten according to two dimensionless parameters: Θ and η. (4.19), with x the position inside the 

body. 
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The new dimensionless equation with the correspondent boundary conditions is reported in 4.20 and 

4.21. 
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The solution of the equation 4.20 is the error function (erf function) (4.21). 
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The solution of the integral of the erf function is not known in explicit form. The values of the error 

function can be found tabled.  

Due to the thermocouple placed inside the biomass bed, the heating curve of the biomass has been 

registered, and it has been possible to calculate the time to heat the biomass from the initial 

temperature Ti to the final temperature T. In this way the Θ and the erf(η) values are easily 

calculated. Than the value of η has been extrapolated from the tables reported in [Guglielmini, 

2004]. From the definition of η it is possible to come to λ , the thermal conductivity of the solid 

body (4.23) 
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η τ
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 

              (4.23) 

Since all the terms of the equation 4.23 are known, an apparent thermal conductivity has been 

estimated. The apparent thermal conductivity adopted in the finite element model is an average of 

the λ values calculated by means of the experimental data of five of the tests performed. The 

estimated thermal conductivity λ is 1.23 Wm-1 K-1. 
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4.6 Linking the models 

The 2D model – corrected with the apparent thermal conductivity - has been coupled with the 

modified equilibrium model, to take into account the biomass conversion in char and methane. The 

temperature profile is shown in figure 4.14. The thermocouples are placed in correspondence of the 

step number 3 (thermocouple 1), step number 5 (thermocouple 2) and step number 10 

(thermocouple 3). Three points indicate the typical temperatures measured during the experimental 

tests. The predicted temperatures are close to the measured ones. 

Figure 4.14 Reactor temperature profile simulated by the finite element model  

In figure 4.15 the temperature of the biomass predicted by the model at each step is reported. The 

temperature is, on average, around 700°C, as the temperature registered in the experimental test by 

the thermocouple dipped in the biomass bed. On the right, the biomass consumption estimated by 

the correction parameter (ξi) is reported.  

Figure 4.15 Predicted temperatures of the biomass bed (left) and biomass consumption (right) 
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The biomass is almost totally converted at the end of the reactor. This has no correspondence in the 

experimental results, even if, it should be considered that the high char residual in the experimental 

test can be due to the fixed bed configuration and the  type of feedstock chosen (pellets). 

The gas composition for step number 1, 3, 5 and 10 has been reported in figure 4.14.  

Figure 4.16 Syngas and temperature profile for step   1, 3, 5 and 10. 

The gas composition predicted by the quasi equilibrium model changes significantly respect to the 

charts of figure 4.13. Due to a higher average value of the temperature (see radial profiles) predicted 

by the 2D model with respect to the previous simulation and to a lower carbon moles in input with 

respect to the model prediction, the syngas reaches a stable composition which is close to the 

experimental one (the average experimental gas composition is: H2:51.4% CO:12%,CO2: 29%, 

CH4:6.6%).  

To have a complete view, in figure 4.17, the temperature field predicted for the ten steps has been 

assembled (right) and the trend of the gas composition along the whole reactor has been reported. 

The simulated temperatures inside the reactor range between 700 and 800°C, as the measured ones.  

Finally, it is worth to compare the measurements of the hydrogen sulphide with the concentration 

predicted by the equilibrium model. The stoichiometric equilibrium model takes into account 

different sulphur compounds (C2S, H2S, SO2, SO3, S, COS) and the results is that, at equilibrium, 

the initial sulphur turns mainly in hydrogen sulphide.  
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In the experimental measurements, the hydrogen sulphide emissions have not a stable trend. The 

measured values jump between 30 and 70 ppm.  This is probably due to a non uniform sulphur 

distribution in the feedstock composition. The elemental analyses have shown that the sulphur 

concentration is below 0.01%, but in some samples of crushed pellets no trace of S have been 

detected.  

The equilibrium model, having in input a S content of 0.01%, foresee an H2S concentration around 

30-35ppm (as shown in figure 4.18). Even if the model does not foresee the highest concentration of 

H2S measured (70ppm), it gives a reliable estimation of the minimum level that will be found in the 

syngas.  

Figure 4.17 Temperature and gas composition predicted along the vertical and radial axis of the reactor. 

Figure 4.18 Model prediction of H2S concentration for each step. 
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Chapter 5  

 

Dolomite and iron efficiency in tar cracking  

 

5.1 Introduction 

The syngas produced via the steam gasification process has high hydrogen content, and it can be 

considered as a fuel with a high heating value quality. However, as mentioned above, the raw 

synthesis gas needs to be cleaned from tars before it may be upgraded to other commodities. That is 

because the reactors downstream, very often, are using catalysts to control the reactions. In most 

cases if tars deposit on the catalyst surface it will block the active sites i.e. carbon acts as catalyst 

poison. Furthermore, tars in the raw gas can also cause corrosion and blockage of pipes in 

downstream process equipment. 

At present, the main challenge with respect to gasification of biomass is to minimize the tar content 

in the product gas and optimize the concentration of the permanent gases, increasing the H2, CH4, 

and CO contents. This may be achieved utilizing a tar cracking catalyst in a catalytic bed reactor. 

The most effective catalyst in tar cracking is traditionally nickel, but other alternatives have to be 

considered due to the high nickel cost [Baker, 1987], [Torres, 2007]. Several authors have reported 

about the catalytic tar cracking ability of dolomite [Olivares, 1997], and recently also the iron based 

catalysts have shown interesting abilities in tar cracking [Tamhankar, 1985], [Delgado 1996]. 

An extensive experimental campaign has been performed using a small-scale laboratory fluidized 

bed gasifier at the Royal Institute of Technology (KTH), Stockholm. The main goal has been the 

assessment of the tar cracking capability of different types of dolomite and of two types of iron 

based catalysts. The gas composition and tar concentration in the product gas have been analyzed. 

The modified non-stoichiometric equilibrium model has been used to predict the syngas 

composition and a good agreement with the experimental results has been found.  

5.2 Experimental activity in an air fluidized bed gasifier 

5.2.1 Experimental methods and procedures 

The biomass gasification tests have been performed in an atmospheric fluidized bed gasification 

system available at the KTH laboratories [Heginuz, 1996]. The total system comprises a biomass 

feeder, a pre-heater, a fluidized bed reactor, a ceramic filter and a catalytic bed reactor. The reactor 

part that contains the fluidized bed has an inner diameter of 0.05 m and a height of 0.254 m. A cone 

is connecting the lower part of the reactor with the freeboard. The freeboard diameter is 0.10 m and 

the length is 0.508 m. The fluidized bed consists of 350g of Alumina, with a particle size of 63 – 

125 µm. The fluidization medium is nitrogen while the oxidizing agent is pure oxygen. Before the 
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entrance of the fluidization medium in the reactor it is pre-heated to 650 °C. The syngas produced is 

cleaned from soot and bed particles in a ceramic filter (hot filtration). After the filter the hot gas is 

passed to the catalytic bed for tar cracking. Both the filter and the catalytic fixed bed reactor have a 

length of 0.70 m and an inner diameter of 0.05 m. All parts of the gasification system are heated 

with separated external heaters and the maximum temperature is 950 °C. This heating configuration 

makes it possible to simulate isothermal conditions. 

The fuel is fed directly into the fluidized bed near the distribution plate by means of a screw feeder. 

The fuel hopper is provided with a purge gas of nitrogen. This is to prevent hot gases from entering 

in the hopper and making the fuel sticky. A detailed experimental setup has been described by 

Vriesman [Vriesman, 2001]. Figure 5.1 presents a schematic view of the gasification system.  

Figure 5.1 Schematic view of the KTH’s gasification system 

An extensive experimental campaign has been performed to examine the effect of the gasification 

temperature on gas, char and tar production. In the first stage nine runs have been conducted to 

investigate the efficiency of three types of dolomites (one from Sweden and two from China) in tar 

decomposition at different reaction temperatures (700, 750 and 800°C). Both the ceramic filter and 

the catalytic bed have been kept at 800°C. In a second stage eight tests to investigate the tar 

cracking efficiency of two metallic iron based catalysts have been run. Three different gasification 

temperatures have been tested (750-800-850°C) and the temperature of the catalytic filter has been 

moved between 750-800-850 and 900°C. For both series of tests birch wood has been used as 

feedstock. The elemental composition is reported in table 5.1. The biomass has been sieved before 

each test (particle sizes between 1-1.5 mm) to assure a constant feeding rate, that was 

approximately 4 g min-1 in all tests.  
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The cool, dry, clean gas composition has been analyzed with a gas chromatograph (Model 

Shimadzu, Japan), equipped with a flame ionization detector (FID) and a thermal conductivity 

detector (TCD). The tar sampling and analyses have been accomplished using the solid phase 

adsorption (SPA) method, described elsewhere [Brage, 1997]. Briefly, a 100 ml gas sample is 

manually drawn through a SPE tube during one minute. Later the SPE tubes are eluted using two 

different solvent mixtures to obtain an aromatic fraction and a phenolic fraction. The eluates were 

afterwards analyzed by gas chromatography. 

Table 5.1 Elemental composition of the biomass employed 

Elemental composition (% mass, dry sample) 

Birch wood 

C: 49 H: 6.1 O: 44.6  N: 0.1 S< 0.01 

Moisture (% mass a.r.) 7.0 

Ash (%mass a.r.) 0.4 

PCI (MJ kg-1) 19.3 

During the first series of tests, the ER value has been slightly changed between 0.21 and 0.26. To 

attain optimal fluidization conditions, 8.8 NL min-1 of nitrogen has been fed to the gasifier during 

the tests. The oxygen flow has been kept constant at 0.85 NL min-1. The duration of tests has been 

between 1.5 and 2 hours. In table 5.2 the experimental parameters are summarized. 

Table 5.2 Parameters of the tests run with dolomite as catalyst (SE= Swedish, Ch= Chinese dolomite) 

Test num T reactor (°C) T ceramic filter (°C) ER dolomite type T catalytic filter (°C) 

1D 700 800 0.21 Sala Se 800 

2D 700 800 0.21 ZhejingCh 800 

3D 700 800 0.21 ShanxiCh 800 

4D 750 800 0.25 Sala Se 800 

5D 750 800 0.24 ZhejingCh 800 

6D 750 800 0.24 ShanxiCh 800 

7D 800 800 0.23 Sala Se 800 

8D 800 800 0.23 ZhejingCh 800 

9D 800 800 0.22 ShanxiCh 800 

In the second series of tests the fluidization conditions have been kept unchanged. The ER values 

have been changed for two of the tests run from 0.22 to 0.32. The experimental parameters of the 

second series of tests are summarized in table 5.3.  

The tests have lasted for 1 hours and 30 minutes and during every test the temperature of the 

catalytic filter has been changed. In this way, for every run, the catalyst has been tested at two 

different temperatures. 
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 Table 5.3 Parameters of the tests run with iron as catalyst (SE= Swedish, Ch= Chinese dolomite) 

Test num T reactor (°C) T ceramic filter (°C) ER Iron type T catalytic filter (°C) 

1I 750 800 0.22 A 850/900 

2I 800 800 0.22 A 750/800 

3I 850 800 0.22 A 750/800 

4I 800 800 0.32 A 800/850 

5I 750 800 0.32 A 850 

6I 800 800 0.22 A 850/900 

7I 800 800 0.22 B 750/800 

8I 800 800 0.22 B 850/900 

5.3 Data Analysis 

5.3.1 Gas composition 

Gas and tar samples have been collected before and after the catalytic bed.  

Figure 5.2 shows the average dry gas composition, nitrogen free, at different temperatures measured 

during the first series of test (dolomite) before and after the catalytic bed. It consists, before the 

catalyst, on 20-22% of hydrogen, 10% of methane and 30% of CO and CO2. The nitrogen, used as 

fluidization medium, has a concentration of 68-70%.  The influence of the reaction temperature has 

mainly effect on the carbon monoxide and carbon dioxide concentrations.  

Figure 5.2 Syngas composition before (b) and after (a)  the dolomite 

The type and the presence of the catalyst does not influence significantly the gas composition, 

except for the hydrogen concentration. The hydrogen slightly increases (2-3%), for all the three 

dolomites and temperatures investigated. For the examinations at 700 and 750 °C there are small 

changes in the CO and CO2 concentrations. Hence, the difference in syngas composition may be 

due to the temperature increase during the passage from the reactor (700-750 or 800°C) to the filter 
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and the catalytic bed (both the ceramic filter and the catalytic bed are kept at 800°C), and/or to the 

dolomite cracking of heavy hydrocarbons, which lead to hydrogen formation. 

Figure 5.3 (right) shows the syngas composition measured before the Iron based catalyst, during the 

second series of tests. On the left, the gas composition after the catalyst, tested at different 

temperature, has been reported. The higher is the catalyst temperature the lower is the CO2 and the 

higher is the CO.  

Figure 5.3 Syngas composition before (left) and after (right)  the Iron catalyst 

Knowing the nitrogen inlet flow, and under the hypothesis of no leakage through the system, the 

syngas production has been estimated. The syngas production increases after the passage through 

the catalytic bed, due to the conversion of heavy hydrocarbons. In table 5.4 the estimated syngas 

production is presented. The increase after the dolomite bed is almost constant for tests performed 

at the same gasification temperature, except for test number 8D, where something has not worked 

properly.  

Table 5.4 Syngas production before and after the dolomite filter, N2 free 
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1D 700 2.84 3.15 11% 

2D 700 3.71 4.25 14% 

3D 700 3.67 4.08 11% 

4D 750 3.58 3.84 7% 
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7D 800 3.94 4.21 7% 
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The same calculations have been done for the second series of test. No remarkable variations in the 

syngas production have been measured after the catalyst. The gas production, nitrogen free, remains 

stable between 3.8 and 4.2 NL min-1 (around 1 Nm3 kg-1). 

During the first series of tests, the ER values have been moved from 0.21 to 0.26.  The syngas 

heating value has been calculated (nitrogen free) as a weighted average of the gas composition. A 

plot of the gas heating values and the ER can be seen in figure 5.4. An almost linear trend has been 

noticed between the ER value and the calorific value of the gas before the catalyst, even though the 

correlation coefficient is about 0.7. In the gas composition, increasing the ER, lower H2 and higher 

CH4 and CO concentrations have been measured.  

Figure 5.4 Gas heating value before and after the dolomite versus ER 

After the dolomite bed, the syngas heating value has an almost uniform value in spite of different 

gasification temperatures and equivalent ratio values. This is may be due to both the tar cracking 

effect of the dolomite, and the influence of the temperature of the catalytic filter. 

For the tests run with iron as catalyst, the ER value has been kept constant at 0.22 (except for tests 

number 4 and 5). The syngas heating value it is, on average, around 11-11.6 MJ Nm-3 (N2 free).  

5.3.2 Mass balance 

For each test a known amount of biomass is loaded in the fuel hopper. After the test the char 

produced have been collected and weighted. From the syngas analysis and the amount of nitrogen 

fed in the gasifier, the gas production per kilogram of biomass has been estimated, considering 

nitrogen as an inert gas. The tar production before and after the catalytic bed is sampled, measured 

and analyzed. The carbon conversions in the gas, char and tar have been calculated and the overall 

mass balances have been closed with an error of +/- 5%. (The complete data of the tests run are 

reported in Appendix A).  
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The char production in fluidized bed is usually quite low. In figure 5.4 and 5.5 the percentage, as 

mass, of the produced char respect to the total biomass fed during the test, has been plotted against 

the gasification temperature and the ER value, respectively. A general trend can be noticed in both 

charts, even weather the correlation of figure 5.5 is stronger (correlation coefficient 0.88). The char 

production is remarkable influenced by the equivalent ratio. 

The tests conditions, the gas and tar compositions, the mass balances are summarized in Appendix 

A.  

Figure 5.5 Empirical correlation between the reaction temperature and char production 

Figure 5.6 Empirical correlation between the ER value and % of char production on the amount of feedstock  
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5.3 Dolomite and Iron efficiency in tar cracking 

Three types of dolomites have been tested, two from China and one from Sweden.  From the 

analysis in the dolomite composition (table 5.5) no significant differences can be noticed; thus 

comparable efficiencies in tar cracking are expected for the three dolomites. 

Table 5.5 Composition of the dolomite tested 

Dolomite CO2 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O P2O5 MnO TiO2 

Shanxi 50 0.25 0.14 0.48 26.14 22.39 0.01 0.01 0.02 0.007 0.01 

Zhejing 48.61 0.35 0.14 0.03 30.72 20.12 0.02 0.01 0.01 0.002 0.00 

Sala 44.80 1.94 0.36 0.53 30.1 20.9 0.04 0.02 0.01 0.07 0.01 

For each test, a sample of 150 g of calcined dolomite has been added to the catalytic filter. The 

results on tar composition before and after the catalyst are reported in table 5.6 (for more details see 

appendix A).  

Table 5.6 Tar reduction using calcined dolomite as catalyst

 1 2 3 4 5 6 7 8 9 

Dolomite Sala Zhejing Shanxi Sala Zhejing Shanxi Sala Zhejing Shanxi 

T bed (°C) 700 700 700 750 750 750 800 800 800 

T catalyst (°C) 800 800 800 800 800 800 800 800 800 

ER 0.22 0.22 0.22 0.26 0.25 0.25 0.24 0.26 0.23 

Feeding rate (g min-1) 4.17 4.17 4.23 3.59 3.72 3.73 3.78 3.58 4.03 

Tar before (mg g-1
biom ) 14.51 18.9 17.4 13.82 19.98 16.12 15.89 9 15.3 

Tar after (mg g-1
biom ) 4 5.38 4.99 4.92 7.06 6.64 5.34 4.9 7 

% reduction 72 72 71 64 65 59 66 46 54 

The dolomites, kept at 800°C, have shown a good efficiency in tar cracking. As expected, the tar 

production is higher at lower temperature. However, the higher dolomite efficiency in tar cracking 

is registered for the lowest gasification temperature (700°C). This means that dolomite has a good 

performance in cracking the tars compounds classified as “primary products” (the tar formed 

between 600- 800°C ,see 1.5.1). Anyway, in spite of the different gasification temperatures, the tar 

levels in the syngas after the catalyst are comparable.   

Two iron based catalyst have been tested: Type A and type B. The tests on the iron based catalyst 

have been run as a part of a KTH project, and the results can be found in [Nemanova, 2011].  The 

results of the tests are reported in table 5.7. In two tests, the tar analyses have been omitted because 

the sampling conditions have not been considered reliable.  

The measured tar cracking efficiency increases with the temperature of the catalytic bed filter. On 

average, the catalyst placed at 750°C has an efficiency around 24%, that rises up to 50-58% for 

catalyst temperature of 900°C.  

Besides the good tar abetment shown by the iron based catalysts, better performances have been 

noticed for the calcined dolomite. For the steam gasification tests at Sofcpower (Trento, Italy), the 
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dolomite has been chosen as a suitable catalyst, not only for the higher efficiency, but also 

considering that the iron could be oxidized by the steam that does not react in the syngas produced 

via the steam gasification process.  

In spite of the good tar abetment shows from the iron based catalysts, better performances have 

been noticed for the calcined dolomite. For the steam gasification tests at Sofcpower (Trento, Italy), 

the dolomite has been chosen as a suitable catalyst, for not only the higher efficiency showed, but 

also considering that the iron (which is in its metallic state) could be oxidized by the steam content 

that remains unreacted in the syngas produced via the steam gasification process. From the other 

side the steam could also react with the carbon that has precipitate on the iron surface but further 

investigations are planned at KTH in this field.  

Table 5.7 Tar reduction for Iron based catalyst 

test Trector (°C) catalyst T cat (°C) ER CO2 % CO % H2 % CH4 % tar (mg/gbiom) % red 

1I 750   - 0.22 34.0 31.1 22.5 9.1     
  750 iron A 850 0.22 30.6 33.7 24.3 9.3    

  750 iron A 900 0.22 27.0 38.2 25.1 8.8     

2I 800   - 0.22 32.1 33.5 23.0 9.1 6.68   
  800 iron A 750 0.22 30.5 33.7 24.2 9.5 4.91 26% 

  800 iron A 800 0.22 29.8 34.9 24.3 9.1 5.05 24% 

3I 850   - 0.22 24.3 40.9 25.1 8.7 2.81   
  850 iron A 750 0.22 26.3 38.7 25.4 8.7 2.03 27% 

  850 iron A 800 0.22 24.6 41.0 25.4 8.2 2.34 17% 

4I 800   - 0.32 39.8 30.0 20.6 7.8 3.07   
  800 iron A 800 0.32 36.7 31.0 23.0 7.8 1.94 37% 

  800 iron A 850 0.32 33.3 35.2 22.5 7.7 1.34 56% 

5I 800  - 0.32 42.5 30.4 19.0 6.6    

  800 iron A 850 0.32 25.9 36.0 25.8 10.3     

6I 800   - 0.22 31.6 33.4 23.2 9.5 5.63   
  800 iron A 850 0.22 29.2 35.0 24.6 9.2 4.37 22% 

  800 iron A 900 0.22 25.8 38.9 25.0 9.2 2.37 58% 

7I 800   - 0.22 32.3 32.7 23.4 9.2 6.52   
  800 iron B 750 0.22 31.9 32.8 23.4 9.5 5.08 22% 

  800 iron B 800 0.22 31.7 32.6 24.4 9.0 4.96 24% 

8I 800   - 0.22 31.6 33.4 23.2 9.5 5.69   
  800 iron B 850 0.22 29.2 35.0 24.6 9.2 3.86 32% 

  800 iron B 900 0.22 25.8 38.9 25.0 9.2 3.04 47% 

To test the dolomite efficiency even in presence of steam, four tests have been carried out different 

amount of steam directly in the catalytic filter, mixing it with the syngas yield. The tests have been 

performed keeping stable temperatures,  700°C in the reactor and 800°C in the ceramic and in the 

catalytic filter (with Sala dolomite). The results of these tests are summarized in table 5.8. The gas 

composition changes increasing the SC, since the steam added act as gasifying media and promote 
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the conversion in CO, CO2 and H2 of the compounds cracked by the dolomite. The dolomite shows 

a good efficiency even with high steam concentration. 

Table 5.8 Tar reduction mixing steam with the catalytic bed of dolomite 

Test water(g min-1) SC ER CO2% CO % H2 % CH4 % Tar b. mg g-1
biom Tar a. mg g-1

biom Efficiency 

A 0 0 0.22 28.9 23.1 23.1 10.0 9.88 3.62 63% 

B 0.51 0.1 0.22 32.2 24.3 24.3 10.1 10.3 4.64 55% 

C 1.24 0.4 0.22 35.4 25.6 25.6 9.6 9.1 5.32 42% 

D 2.25 0.7 0.22 40.6 27.6 27.6 9.3 9.8 5.38 45% 

E 3.56 2 0.22 45.1 27.9 27.9 9.1 10.1 5.63 44% 

5.4 Modelling analysis  

The 1 phase non-stoichiometric model described in chapter 4, has been used to predict the syngas 

composition of the tests described above. Both the equilibrium model and the quasi-equilibrium 

model, which takes into account the carbon conversion efficiency (ηc) and the moles of methane 

and hydrogen which participates to the methane and ethylene formation (n1 and n2 ), have been 

considered.  

The carbon conversion efficiency has been calculated using the empirical correlation reported in 

figure 5.5. 

From the carbon balance it has been estimated that approximately 20% of the initial moles of 

Carbon and 45% of the initial moles of hydrogen contribute to the formation of char (which is 

considered carbon at 97%), CH4 and C2H4. These moles have been subtracted from the values of the 

input vector (N0
input) .  

The output of the modified model has been compared with the experimental data. The comparison 

between the model results and the test run with dolomite (in which both the ER and the gasification 

temperature have been changed) is presented in table 5.9.  

Table 5.9 Predicted gas composition for the experimental test with the modified equilibrium model 

Dolomite Sala Zhejing Shanxi Sala Zhejing Shanxi Sala Zhejing Shanxi 

Test num 1 2 3 4 5 6 7 8 9 

CH4 10.03 10.32 9.67 10.27 10.70 10.00 9.50 9.22 10.13 

CO 33.08 32.52 35.07 34.35 32.60 35.01 36.82 36.76 37.30 

CO2 26.27 26.89 24.37 27.63 28.21 30.08 24.13 24.95 23.38 

H2 27.16 26.58 28.47 23.95 24.52 21.20 26.49 26.19 26.52 

C2H4 3.46 3.69 2.42 3.80 3.96 3.70 3.07 2.88 2.67 
 

As an example, figure 5.7, 5.8 and 5.9 show the comparison for the test performed with Zhejing 

dolomite - for three gasification temperatures (test number 2, 5, 8) - among the equilibrium model 
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(EQ_1), the modified model (EQ_MOD), the experimental gas composition before (Exp) and after 

the catalyst (Exp_dolomite). It appears clearly that the gas composition predicted predicted by the 

“pure” equilibrium model is quite far from the real composition. The concentration of the carbon 

monoxide is overestimated as well as the hydrogen one; vice versa the carbon dioxide is 

underestimated and the methane is almost zero.  Thanks to some modifications, a closer agreement 

between the simulated and the experimental data has been achieved. In the last column, the gas 

composition measured after the catalytic filter has been also reported. As discussed in paragraph 

5.3.1, the dolomite bed has a slight influence on the syngas composition, anyway the gas 

composition after the dolomite is in better agreement with the modelled one. 
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Figure 5.7 Comparison among the experimental gas composition (dry basis) and the output of the 
equilibrium models for the test number 2 (gasification temperature: 700°C) 

0
5

10
15

20
25
30

35
40

45
50

CH4 CO CO2 H2 C2H4

%
 v

o
l,
 N

2
 f

re
e

EQ_1 EQ_MOD Exp Exp_dolomite
 

Figure 5.8 Comparison among the experimental gas composition (dry basis) and the output of the 
equilibrium models for the test number 5 (Gasification temperature: 750°C) 
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Figure 5.9 Comparison among the experimental gas composition (dry basis) and the output of the 
equilibrium models for the test number 10 (Gasification temperature: 800°C) 
 

The syngas lower heating value (LHV) has been calculated both for modelled and experimental 

data. The values have been estimated as the weighted average of the gas composition. The results 

are summarized in table 5.10. A satisfying agreement between the experimental and the theoretical 

gas heating values has been assessed. It has also been noticed that, even using the output of the 

“pure” equilibrium model (EQ_1), the calorific value is not so far from the experimental one. This 

is probably due to the high concentrations of carbon monoxide and hydrogen predicted by the 

model that counterbalance the lack of methane.   

Table 5.10 Low heating value estimated for modeling and experimental gas composition 

LHV (MJ Nm-3) 
Test number EQ_1 EQ_MOD Experimental Exp_dolomite 

1 11.2 12.6 11.5 12.0 

2 11.2 12.7 11.8 11.8 

3 11.2 12.3 11.1 11.7 

4 10.5 12.7 12.2 11.7 

5 10.6 12.8 12.1 11.9 

6 10.6 12.4 11.8 11.9 

7 10.7 12.6 12.1 11.7 
8 10.5 12.4 11.6 11.2 

9 10.8 12.7 11.9 11.8 
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Chapter 6  

 

Conclusions and perspectives 

 

At present, the biomass thermochemical conversion processes and their applications for heat and 

power generation are object of several research studies, to find out efficient systems to exploit the 

energy content of biomass, which is considered one of the most promising renewable energy 

sources.  

The aim of the present work is to improve the understanding of the potential of the steam 

gasification process for power generation in small scale applications. The syngas produced via 

steam gasification process seems to be a suitable fuel both for gas engines and also for solid oxide 

fuel cells due to high hydrogen content. 

The issues discussed in the previous sections, concern: 

• the investigation on the current status of biomass gasification: the main operative plants at 

large, small and lab scale, and the analysis of the main parameters that influence the syngas 

quality (chapter 2); 

• the design and development of a small scale fixed bed gasifier, with a semi continuous 

configuration and then with a continuous one, equipped with a steam generator and a hot gas 

cleaning line; 

• the characterization of the syngas and the hydrogen sulphide produced via the steam 

gasification process as a function of the SC ratio and the gasification temperature (chapter 

3); 

• the comparison between the outputs of a two-phase thermodynamic equilibrium model, 

previously developed, and the experimental data. The non satisfactory agreement between 

the data and the model results have led to the development of a non stoichiometric 

equilibrium model  that has been tuned up with the experimental data (chapter 4); 

• the results of an extensive experimental activity performed in an oxygen fluidized bed 

gasifier at KTH, Stockholm, to investigate the tar cracking efficiency of different types of 

dolomites and two iron based catalysts. The data collected on the syngas composition have 

been compared with the outputs of the modified  equilibrium model (chapter 5); 

• the use of the experimental data to calibrate both the equilibrium model and a finite element 

model which solves the heat and Eulero equations and allows the simulation of the 

temperature profile inside the reactor. 

Before the construction of any conversion systems, engineering models are usually applied to 
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design and evaluate the performances of these gasification systems. In this project there has been 

the opportunity to compare theoretical results with experimental data. A good agreement has been 

found in the evaluating the energy consumption required by the system. 

A thermodynamic equilibrium model has been used in the preliminary phase of this project to 

estimate the syngas composition. The positive aspect of the thermodynamic approach is its 

applicability to several systems without a deep knowledge of the reaction mechanism. It can be 

successfully utilized to know the maximum theoretical performance of a biomass conversion 

process.  A satisfactory agreement has been found between the experimental data and the 

equilibrium model simulations tuned with the data collected during the experimental activity on the 

steam gasifier. The same approach has been followed to predict the gas composition of the air 

gasifier tested at KTH in Stockholm, and a good agreement with the measured gas composition has 

been observed. Finally, a finite element model, tuned up with the experimental data, has been 

coupled with the quasi-equilibrium model with good results.  

The experimental activity has included the building and testing of a continuous steam gasifier (11-

13 kWth in input) that can work for several hours. The syngas produced is characterized by a 

hydrogen content that ranges between 50-60% and a LHV of 8MJ Nm-3. The obtained syngas seems 

to be a suitable fuel for fuel cells. The main problem is the gas cleaning: the Tar and the H2S 

contained in the gas can rapidly decrease the life of the fuel cells. Since solid oxide fuel cells work 

at high temperature, a hot gas cleaning system has been built within the present project. The 

dolomite efficiency in tar cracking at high temperature (800°C) is well proved, as shown both in 

this project and in other experiences found in literature. A catalytic filter of a mixture of dolomite 

and manganese oxides, that recently has shown a good efficiency in H2S abatement, has been 

prepared. However, the cleaning part is still the bottleneck of this experimental apparatus, since the 

optimum working conditions have not been found yet.  Anyway, some preliminary tests have been 

done coupling the gasifier with a fuel cells stack and some promising results have been observed. 

This project has shown the potential of the steam gasification process which is a promising way to 

obtain a gaseous fuel with high hydrogen content. It has also been confirmed that the gasification 

process, from a thermochemical point of view, is a complex phenomenon to be still studied in 

details. Anyway, the thermodynamic approach remains the simplest engineering tool to assess, with 

a good reliability, the theoretical performance attainable from a gasification system knowing only 

the main gasification parameters.   

 

Therefore, further research activities are currently needed in this field:  

• validating the application of the model to other power generating systems; 

• extending the model with kinetic estimation of the methane production and/or the inclusion 

of the (third) liquid phase (i.e. including liquid vapor equilibrium);  

• improving the laboratory apparatus tested ( the steam gasifier plus the SOFC stack). 

The first activity requires an extended state-of-art literature review focused on existing experimental 

activities, while the second one represents a (quite complex) enhancement of the proposed model, 
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that needs the coupling of a kinetic approach with the equilibrium one and/or the implementation of 

a further phase-equilibrium in the model code. 

The last foreseen activity concerns the improvement of the small scale steam gasifier. For this 

purpose, an important issue is the changing of the reactor heating system. For example the char 

produced can be recovered and burned for the reactor heating. This is a compulsory step because 

the system must to be independent from the electric energy both for the small scale applications and 

for the scaling up of the plant. Moreover, the gas cleaning system has to be improved to get a higher 

gas quality. At the moment, a hot gas cleaning session is present. However a cold cleaning system 

has shown a better performance without needing the catalytic filter. On the other side a cold 

cleaning system implies the loss of the enthalpy content of the syngas coming out from the gasifier 

at high temperature.  

The theoretical calculations show that an efficient solution would be the introduction of a 

regenerative heat exchanger coupled with a cold gas cleaning system. This configuration allows 

recovering the gas enthalpy content during its cooling from 800 to 100°C (the latent heat has not 

been considered in the heat exchanger) and using it for heating of the dry cleaned syngas from 25°C 

to 800°C. The calculations show that this solution works both for SC=2 and SC=3 and includes 

several advantages: avoids the heating of the catalytic filter, allows both a higher level of gas 

cleaning from tar and hydrogen sulphide and the removal of the water fraction present in the raw 

wet syngas. This configuration is recommended to improve the system efficiency and should be the 

next step in the improvement if the experimental apparatus. 
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Appendix A 

Report of the tests run at KTH 

In Appendix A the results of the experimental test performed at KTH, Stockholm are reported. 

The first table shows the test run with dolomite as catalyst, instead the second and third tables 

report the results for the test run with iron based catalyst. The gas and tar composition, and the 

carbon balances are summarized. 
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Summary of parameters and results of the tests run with dolomite as catalyst. 

Catalyst 1D   2D   3D   4D   5D   6D   7D   8D   9D  

  Sala   Zhejing   Shanxi   Sala   Zhejing   Shanxi   Sala   Zhejing   Shanxi 

Temperature Bed (°C)  700  700  700  750  750  750  800  800  800 

Temperature Catalyst (°C)  800  800  800  800  800  800  800  800  800 

ER  0.21  0.21  0.21  0.25  0.24  0.24  0.23  0.23  0.22 

feeding (g min
-1

)  4.17  4.17  4.23  3.59  3.72  3.73  3.78  3.58  4.03 

Char in bed (g tot)  15.10  10.00  15.80  1  3  6.2  3  3.2  2.3 

Gas product (N2 free( vol%)) before after before after before after before after before after before after before after before after before after 

reaction time (min) 60 75 55 68 45 75 40 50 50 50 55 51 40 54 45 45 30 61 

CO2 34.19 30.02 34.73 30.51 34.59 30.92 31.88 31.19 32.42 30.60 33.19 30.50 29.73 29.26 31.82 31.95 29.73 29.62 

C2H4 3.39 2.63 3.65 1.79 2.49 0.00 3.93 2.24 3.84 2.66 3.73 2.86 3.19 1.89 2.96 1.99 3.19 2.37 

C2H6 0.00 0.00 0.00 0.64 0.00 1.98 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.08 0.00 0.00 0.10 0.00 

C2H2 0.66 0.22 0.00 0.00 0.00 0.00 0.52 0.22 0.44 0.18 0.50 0.22 0.00 0.00 0.17 0.13 0.00 0.19 

H2 22.05 24.20 20.27 22.98 21.54 23.15 18.06 21.87 18.93 21.93 20.20 22.08 19.87 22.53 20.75 22.18 19.87 22.49 

CH4 9.54 9.92 10.18 10.15 9.76 10.23 10.19 10.00 10.02 9.72 9.84 9.54 9.81 9.93 9.50 9.16 9.81 9.72 

CO 29.87 32.76 30.61 33.30 31.29 33.46 34.83 33.92 33.69 34.28 31.92 34.15 36.63 35.71 34.16 33.95 36.63 34.94 

Low Heating value 11.96 11.99 11.87 11.81 11.26 11.67 12.63 11.69 12.43 11.86 12.24 11.95 12.25 11.68 11.82 11.23 12.25 11.84 

Syngas production (Nm3 /kgbiom) 0.64 0.76 0.89 1.02 0.87 0.97 1 1.07 0.97 1.04 0.98 1.05 1.04 1.12 1.01 0.99 1.01 1.06 

Tar                   

Tar without benzene(mg g
-1

biom) 14.51 4.00 18.90 5.38 17.40 4.99 18.42 5.32 19.98 7.06 16.12 6.64 15.89 5.38 10.5 4.9 15.3 7 

Benzene (mg g
-1

biom) 8.94 12.36 12.41 17.40 11.53 14.99 13 16.17 19.09 20.36 16.38 19.08 21.2 18.59 16.74 17.2 18.8 18.75 

Indene (mg g
-1

biom) 1.36 0.00 1.93 0.00 1.46 0.00 1.45 0 1.6 0 1.19 0 0.28 0 0.28 0 0.24 0 

Napthalene (mg g
-1

biom) 1.78 1.97 2.65 2.80 2.38 2.81 3.12 2.42 4.53 3.95 3.76 3.56 5.36 3.04 4.01 3.54 4.6 3.28 

Toluene (mg g
-1

biom) 4.59 2.02 5.80 1.70 5.52 1.57 4.72 2 5.8 2.26 5.23 2.07 2.11 0.88 1.49 0.75 1.8 0.76 

Carbon conversion                   

to gas  (%wt) 60.0 64.0 81.0 89.0 80.0 85.1 94.5 94.59 94.87 91.22 92.80 93.7 96.0 98.0 86.0 87.0 91.0 94.0 

to char  (%wt) 6.0 6.0 4.0 4.0 7.0 7.0 4 0.65 0.65 1.46 1.46 1.9 1.8 1.8 1.8 1.8 1.3 1.3 

to tar  (%wt) 1.0 1.1 1.0 1.1 1.0 1.1 1.5 1.55 1.09 1.98 1.44 1.3 2.0 1.5 1.4 1.0 1.5 1.5 

mass balance % 67.0 71.1 86.0 94.1 88.0 93.2 100 96.80 96.62 94.67 95.70 96.9 99.8 101.3 89.2 89.8 93.8 96.8 
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Summary of parameters and results of the tests run with iron as catalyst. 

Test number  1I   2I   3I   4I  

Catalyst   Iron A    Iron A    Iron A    Iron A  

Temperature Bed (°C)   750    800    850    800  

Temperature Catalyst (°C)   850/900    750/800    750/800    800/850  

ER   0.22    0.22    0.22    0.22  

feeding ( g min-1)   3.70    3.70    3.70    3.70  

Char in bed (g tot)   20.00    9.80    11.00    7.00  

Gas product (N2 free( vol%)) before Iron 850°C Iron 900°C Before Iron 750°C Iron 800°C Before Iron 750°C Iron 800°C Before Iron 800°C Iron 850°C 

CO2 34.99 32.50 26.95 32.15 30.47 29.78 24.35 26.27 24.57 39.79 36.71 33.33 

C2H4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C2H6 2.58 1.75 0.74 1.80 1.62 1.43 0.58 0.58 0.47 1.37 1.09 0.84 

C2H2 0.29 0.10 0.00 0.11 0.21 0.16 0.01 0.09 0.06 0.07 0.09 0.04 

H2 21.91 24.98 25.10 22.96 24.16 24.35 25.14 25.35 25.43 20.58 22.98 22.55 

CH4 9.49 6.18 8.78 9.10 9.48 9.06 8.72 8.72 8.17 7.79 7.81 7.74 

CO 30.46 34.38 38.19 33.53 33.69 34.90 40.91 38.69 41.01 30.04 30.96 35.17 

Low Heating value 11.44 10.44 11.16 11.20 11.42 11.30 11.39 11.17 11.19 9.73 9.95 10.21 

Syngas production (Nm
3 

kg
-1

) 1.03 0.99 1.04 0.99 1.09 1.07 1.19 1.17 1.15 1.08 1.16 1.18 

 Tar                 

Tar without benzene(mg g-1
biom ) - - - 6.68 4.91 5.05 2.21 2.03 2.34 1.34 1.11 3.07 

Benzene (mg g
-1

biom ) - - - 10.20 10.49 10.25 10.75 10.11 10.31 7.92 8.47 8.57 

Indene (mg g
-1

biom ) - - - 0.31 0.23 0.20 0.17 0.16 0.37 0.08 0.12 0.20 

Napthalene (mg g-1
biom ) - - - 2.95 2.33 2.43 0.66 0.72 1.16 0.02 0.60 1.26 

Toluene (mg g-1
biom ) - - - 0.66 0.49 0.33 0.11 0.07 0.06 0.30 0.16 0.11 

Carbon conversion             

to gas  (%wt) 80% 79% 78% 78% 84% 82% 90% 88% 86% 87% 90% 92% 

to char  (%wt) 10% 10% 10% 5% 5% 5% 5% 5% 5% 3% 3% 3% 

to tar  (%wt) 2% 0% 0% 3% 3% 3% 2% 2% 2% 2% 2% 2% 

mass balance % 92% 89% 88% 86% 92% 90% 98% 96% 94% 92% 96% 97% 
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Test number   5I  6I   7I   8I  

Catalyst   Iron A   Iron A     Iron B     Iron B   

Temperature Bed (°C)   800   800     800     800   

Temperature Catalyst (°C)   850   850/900     750/800     850/900   

ER   0.32   0.22     0.22     0.22   

feeding (g min
-1

)   3.70   3.70     3.70     3.70   

Char in bed (g tot)   10.00   14.00     14.00     10.50   

Gas product (N2 free( vol%)) Before Iron 850°C before Iron 850°C Iron 900°C Before Iron 750°C Iron 800°C Before Iron 850°C Iron 900°C 

CO2 25.94 42.53 31.60 29.24 25.75 32.30 31.90 31.72 34.02 32.11 27.33 

C2H4 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C2H6 1.56 1.15 1.87 0.66 0.81 1.92 1.91 1.74 2.41 1.85 0.63 

C2H2 0.12 0.06 0.10 0.07 0.01 0.14 0.17 0.19 0.22 0.10 0.00 

H2 25.77 18.99 23.16 24.62 25.04 23.40 23.45 24.39 22.12 25.32 26.76 

CH4 10.26 6.56 9.53 9.17 9.17 9.24 9.46 9.04 9.65 9.32 8.69 

CO 35.95 30.35 33.41 34.96 38.91 32.67 32.80 32.59 31.13 35.21 37.37 

Low Heating value 12.08 9.01 11.40 11.40 11.44 11.28 11.39 11.22 11.45 11.77 11.13 

Syngas production (Nm
3 

kg
-1

) 0.82 1.20 1.04 0.99 1.09 1.01 1.06 1.03 1.07 1.02 1.08 

 Tar                    

Tar without benzene(mg g
-1

biom) - - 5.63 4.37 2.37 5.99 5.50 4.96 5.69 4.22 3.04 

Benzene (mg g-1
biom) - - 9.61 8.53 7.98 8.99 9.61 8.54 7.46 8.80 6.96 

Indene (mg g
-1

biom) - - 0.39 0.19 0.05 0.30 0.19 0.19 0.17 0.20 0.20 

Napthalene (mg g
-1

biom) - - 1.97 2.06 1.43 2.29 2.35 2.12 2.25 2.05 1.52 

Toluene (mg g
-1

biom) - - 0.59 0.18 0.13 0.61 0.53 0.42 0.49 0.18 0.09 

Carbon conversion                    

to gas  (%wt) 97% 81% 82% 76% 82% 79% 83% 80% 87% 90% 92% 

to char  (%wt) 5% 5% 7% 7% 7% 5% 5% 5% 5% 5% 5% 

to tar  (%wt) 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 

mass balance % 104% 88% 91% 85% 91% 87% 91% 87% 95% 98% 99% 


