Gasifying Cookstoves Database

John Field

Colorado State University, Fort Collins CO

17 February 2012

INTRODUCTION

The following document presents a database of advanced gasifying cookstove designs from around the world, and includes information on design, performance, and production where available. Note that the criteria for stove inclusion in this database is the presence of either a forced air injection system or a distinct secondary air supply. The stoves included below span a spectrum from partial gasifying stoves (combustion air split between primary and secondary, typically a TLUD configuration) to pyrolysis stoves (minimal or no primary air supply) to more traditional designs with secondary forced air injection (forced primary air for enhanced mixing, no secondary air). All of the stoves are in the <10kW power range, and larger-scale 'true' gasifying stoves (defined as lacking radiative feedback between the primary and secondary combustion zones) are not included. Also note that this database only includes selected stoves with information published on the internet, and should not be considered comprehensive. Specifically, we suspect that the Chinese gasifying cookstoves market is undersampled [1], [2] The intention was to include gasifying stoves that have been put into commercial production, that have documented testing data available, or that feature particularly novel designs.

Stove WOODSTOVE, by Philips (Netherlands)

Design TLUD gasifying stove, natural-draft or fan-powered versions, semi-continuously fed

with wood

Production In production for developing country market, cost = ??

Innovations/ Notes Arguably the highest-profile of the partial gasifying cookstoves, is usually the cleanest

stove in terms of particulate emissions in comparison tests.

References [3], [4], [5]

URLs http://www.hedon.info/PhilipsWoodStove

Stove WOODGAS CAMPSOTVE XL, by Spenton LLC, Tom Reed (USA)

Design TLUD gasifying stove, forced-air, batch fed with forest litter, wood chips, pellets or

charcoal, charcoal-producer

Production In production for the recreational market, cost = \$79

Innovations/ Notes This company offers three sizes of woodgas stove; this is the middle size. Tom Reed is

usually credited with the invention of the TLUD configuration in the 1980s.

References [6], [7], [8]

URLs http://www.woodgascampstove.com/Specifications.html

Stove VESTO, by New Dawn Engineering (Swaziland)

Design TLUD gasifying stove, natural-draft, batch fed with wood

Production In production for developing country market, cost = \$61

Innovations/ Notes Name is acronym for 'variable energy stove', designed for a high turndown ratio, body

based off a 25 L paint can

References -

URLs http://www.newdawnengineering.com/website/stove/singlestove/vesto/

https://www.sabs.co.za/index.php?page=disa04

Stove SIERRA, by ZZ Manufacturing (USA)

Design Fan stove, batch fed with twigs/bark/pinecones/charcoal

Production In production for the recreational market, cost = \$57

Innovations/

Notes

Termed a 'mini-forge' stove; primary air is used to cool the combustion chamber, is

preheated in the process

References -

URLs http://www.zzstove.com/sierra.html

http://www.zzstove.com/faq.html

http://www.kk.org/cooltools/archives/000012.php

Stove LUCIA, by WorldStove (Italy)

Design Pyrolyzing stove, natural-draft or fan-powered versions, batch fed, charcoal-producer

Production In production for developing country market, cost = \$51-72 (depending on options)

Innovations/ Notes Highly modular design can be configured for gasification or pyrolytic operation. Complex flow path designed using CFD. Currently being distributed in Haiti in

earthquake-affected areas.

References -

URLs http://worldstove.com/products/luciastove-for-developing-nations/

http://www.treehugger.com/files/2010/03/biochar-breaks-through-in-haiti.php

Stove DAXU, by Beijing Shenzhou Daxu (China)

Design TLUD gasifying stove, natural-draft, batch fed with agro waste or wood

Production In production for developing world market, cost = \$50-94, volume > 25,000

Innovations/ Notes Design features 1-2 hot plates and a chimney, optional boilder for space and water

heating. Winner of a 2007 Ashden Award.

References [2], [9], [10]

URLs http://www.time.com/time/specials/packages/article/0,28804,1921165_1921239_19

21209,00.html

http://www.ashdenawards.org/winners/daxu

http://www.youtube.com/watch?v=x65M9zX4gAo

Stove BEANER, by WorldStove (Italy)

Design TLUD gasifying stove, natural-draft, batch fed with forest litter, charcoal-producer

Production In production for the recreational market, cost = \$39

Innovations/

Notes

Extremely light and portable. Uses an empty soda can for an outer sheath.

References -

URLs http://worldstove.com/products/the-beaner-backpacking-stove/

Stove OORJA, by British Petroleum and later First Energy (India)

Design TLUD gasifying stove, forced-air, batch fed with custom wood pellets

Production In production for developing world market, cost = \$23, volume > 400,000 units

Innovations/ Notes Probably the highest production volume of any gasifying cookstove. Original design

team from BP now developing the stove under the name First Energy.

References [6], [11], [12]

URLs http://www.netroadshow.com/custom/bp/bpflv3.asp?cf=053008b

http://yaleglobal.yale.edu/content/small-stove-big-ambitions

http://www.hindu.com/2007/06/05/stories/2007060505830500.htm

http://www.consumercomplaints.in/news/indian-firms-shift-focus-to-the-poor.html

http://www.thinkchangeindia.org/2010/03/02/tc-i-changemakers-first-energy-to-

change-the-way-rural-india-cooks/

Stove SAMPADA, by the Appropriate Rural Technology Institute (ARTI, India)

Design TLUD gasifying stove, natural-draft, continuously fed with wood chips and pellets,

charcoal-producer

Production In production for developing world market, cost = \$23

Innovations/ Notes Has a supplementary side fuel-loading port for continuous operation. A.k.a. the Karve

Sampada charcoal maker.

References [3], [6]

URLs http://www.arti-

india.org/index.php?option=com_content&view=article&id=52&Itemid=88

http://www.arti-

india.org/index.php?option=com_content&view=article&id=76:improved-cookstoves-

for-the-rural-housewife&catid=15:rural-energy-technologies&Itemid=52

Stove RICE HUSK STOVE, by Alexis Belonio (Philippines)

Design TLUD gasifying stove, forced-air, batch fed with rice husk, charcoal-producer

Production In production for developing country market, cost = \$22

Innovations/ Notes Marketed as a direct alternative to LPG stoves. Primary air is forced, but secondary air is natural-draft. Sold with different reactor sizes to achieve differing cook times.

Winner of 2008 Rolex Award.

References [13], [14]

URLs http://www.minangjordanindo.com/ricehuskgastove.htm

http://crhet.org/

http://rolexawards.com/en/the-laureates/alexisbelonio-the-project.jsp

Stove BIOMASS GAS STOVE, by Minang JordanIndo Approtech (Indonesia)

Design TLUD gasifying stove, forced-air, batch fed with

Production In production for developing country market, cost = ??

Innovations/ Notes Evolution of the Belonio Rice Husk Gas Stove, also marketed as a direct alternative to LPG stoves. Primary air is forced, but secondary air is natural-draft. Features a

removable fuel canister to facilitate fuel loading and char removal.

References [15], [16]

URLs http://www.minangjordanindo.com/biomasgastove.htm

http://www.bioenergylists.org/beloniomjgasstove

Stove VIVEK, by the Appropriate Rural Technology Institute (ARTI, India)

Design TLUD gasifying stove, natural-draft, batch fed with sawdust

Production In production for developing world market, cost = \$13

Innovations/

Notes

Requires a high surface-area fuel such as sawdust or similar

References -

URLs http://www.arti-

india.org/index.php?option=com_content&view=article&id=52&Itemid=88

http://www.arti-

india.org/index.php?option=com_content&view=article&id=76:improved-cookstoves-

for-the-rural-housewife&catid=15:rural-energy-technologies<emid=52

Stove FORCED AIR ROCKET STOVE, by BioLite (USA)

Design Hybrid rocket/gasifier , continuously fed

Production Production expected soon for developing country market

Innovations/ Notes Developed in collaboration with Aprovecho. Traditional rocket stove design,

modified with the additional of a fan.

References -

URLs http://biolitestove.com/NextGen_Cook_Stove.html

Stove CAMP STOVE, by BioLite (USA)

Design TLUD gasifying stove, forced-air, batch fed with forest litter, charcoal-producer

Production Production expected soon for recreational market

Innovations/ Notes Integrated TEG for fan power. Designers advertise an extremely quick water boiling

time. Nice industrial design work.

References [17]

URLs http://biolitestove.com/Camp_Stove.html

Stove SPECTRA, by Spectra Lanka Industries (Sri Lanka)

Design TLUD gasifying stove, natural-draft, batch fed with wood

Production In production for developing world market, cost = ??, volume > 20,000

Innovations/

Notes

Removable inner combustion chamber for easy fuel loading.

References [18]

URLs http://spectra.lk/product/wood%20gas%20stove.html#

Stove NAVAGNI, by Qpre Energy (India)

Design TLUD gasifying stove, natural-draft, batch fed with any biomass, charcoal-producer

Production In production for developing country market, cost = ??

Innovations/ Notes Includes a cap for the combustion chamber, used to smother hot coals when cooking

is complete. Company recommends selling the charcoal generated.

References -

URLs http://www.navagni.com/index.html

http://www.bioenergylists.org/content/navagni-gasifying-co

Stove PEKO PE, by Paal Wendelbo (Norway)

Design TLUD gasifying stove, natural-draft, batch fed with any biomass, charcoal producer

Production Prototype for developing world market, over 5000 units disseminated

Innovations/ Notes Has a 'concentrator disk' for creating turbulence at point of secondary air injection. A riser can be included to enhance natural convection. The name means 'no problem'.

References [6], [19], [20], [21]

URLs http://www.hedon.info/ImprovedCookstovesInUganda

Stove CHAMPION, by Paul Anderson (USA)

Design TLUD gasifying stove, natural-draft, batch fed with any biomass, charcoal producer

Production Prototype for developing world market

Innovations/ Notes Has a 'concentrator disk' for creating turbulence at point of secondary air injection. A riser can be included to enhance natural convection. Reportedly has a good turn-

down ration

References [6], [22], [23]

URLs http://www.chipenergy.com/thirdworld/index.htm

Stove ANILA, by UN Ravikumar of (India)

Design True pyrolysis stove, natural-draft, fed with agro wastes

Production Prototype for developing country market

Innovations/ Notes Pyrolysis chamber is separate from, surrounding combustion chamber. Pyrolysis gases are vented into combustion chamber. Stove retains heat long after the main

combustion is extinguished.

References [24], [25]

URLs http://africaclimate.org/2009/06/14/updated-testing-of-anila-stove/

http://www.hindu.com/2005/12/04/stories/2005120405530400.htm

As the waste material reaches 360 deg C it begins release gases and turn into charcoal

The Pyrolysis gases burn hot and last for more than 1 + 1/2 hrs

At the end of the process all the biomass has changed into charcoal

Raw Material

from the

top down

Pyrolysis

Charcoal

Stove AVAN series, by Sai Bhaskar Reddy (India)

Design Hybrid rocket/gasifier, natural-draft, continuously fed with any biomass fuel

Production Prototype for developing country market

Innovations/ Notes Fuel feed is similar to a rocket stove, but more restrictive. Secondary air ports

facilitate the combustion of pyrolysis gases.

References -

URLs http://www.goodstove.com/

Stove JIKO MBONO, by Bjarne Laustsen (Tanzania)

Design TLUD gasifying stove, natural-draft, batch fed with jatropha seeds, charcoal-producer

Production Prototype for developing country market

Innovations/ Notes Name means 'jathropa stove' in Swahili, development supported by the organization

Partners for Development

References -

URLs http://www.bioenergylists.org/jiko_mbono

Stove HOLEY BRIQUETTE SOTVE, by Richard Stanley and Kobus Venter (South Africa?)

Design TLUD gasifying stove, natural-draft, batch fed with custom-made fuel briquettes of

non-woody biomass

Production Prototype for developing country market

Innovations/ Notes Briquettes are produced using a manual press (lever) out of a water slurry,

and can be enriched with charcoal fines.

References [26]

URLs http://www.bioenergylists.org/node/185

 $\underline{\text{http://www.bioenergylists.org/stovesdoc/Stanley/BriqGassstove.htm}}$

REFERENCES

- [1] L. Spautz, D. Charron, J. Dunaway, H. Fangzhou, and C. Xiaofu, "Spreading Innovative Biomass Stove Technologies through China and Beyond," *Boiling Point*, 2006, pp. 6-8.
- [2] D. Charron and B. Willson, "Promotion of Technology Innovation and Dissemination for High-Efficiency Low-Emissions Biomass Household Stoves in China and Abroad," 2007.
- [3] N. MacCarty, D. Ogle, D. Still, T. Bond, and C. Roden, "A laboratory comparison of the global warming impact of five major types of biomass cooking stoves," *Energy for Sustainable Development*, vol. 12, 2008, pp. 56–65.
- [4] J.J. Jetter and P. Kariher, "Solid-fuel household cook stoves: Characterization of performance and emissions," *Biomass and Bioenergy*, vol. 33, 2009, pp. 294–305.
- [5] J. Alders, "The Philips Woodstove," Jan. 2007.
- [6] P.S. Anderson, "Interpretation of CO and PM Emissions Data from TLUD Gasifier Cookstoves," 2009.
- [7] T.B. Reed and R. Walt, "The "Turbo" Wood-Gas Stove."
- [8] T.B. Reed, E. Anselmo, and K. Kircher, "Testing and Modeling the Wood-gas Turbo Stove," Wood Fires that Fit. Appropriate Technology Journey to Forever. Retrieved November, 2005.
- [9] A. Wheldon and J. Rawlings, "Beijing Shenzhou Daxu Bio-energy Technology Company Ltd, China," The Ashden Awards for Sustianable Energy, 2007.
- [10] P.S. Anderson, "TLUD Gasifier in Ashden Award for Enterprise," 2007.
- [11] ABETS, "Report on tests on reverse downdraft stoves (REDS) for stove applications 2003 to 2008."
- [12] H.S. Mukunda, S. Dasappa, P.J. Paul, N.K.S. Rajan, M. Yagnaraman, D.R. Kumar, and M. Deogaonkar, "Gasifier stoves—science, technology and field outreach," CURRENT SCIENCE, vol. 98, 2010, p. 627.
- [13] A.T. Belonio, Rice Husk Gas Stove Handbook, Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City, Philippines, 2005.
- [14] A. Belonio and D. Atmowidjojo, "A Low-Cost Rice Husk Gas Stove."
- [15] A. Belonio, I. Ginting, D. Atmowidjojo, and B. Minang, "Top-Lit Updraft (TLUD) Type Gasifier for Carbonized Coal."
- [16] A. Belonio and D. Atmowidjojo, "Wood Charcoal Gasifier Stove," Glow, vol. 40, Dec. 2007, pp. 6-7.
- [17] J. Cedar and A. Drummond, "The BioLite Woodgas Campstove."
- [18] P.T. Forests, "Spectra Stove."
- [19] P. Wendelbo and P. Anderson, "Paal Wendelbo and his "Peko Pe" Top-Lit UpDraft (TLUD) Gasifier Cookstoves."
- [20] P. Anderson and P. Wendelbo, "Construction Plans for the "PP-Plus" TLUD Gasifier Cookstove."
- [21] S. Nielsen, "Efficiency tests on the pyrolysis gasifier stove Peko Pe.pdf," 1996.
- [22] P.S. Anderson, "Construction Plans for the "Champion-2008" TLUD Gasifier Cookstove," 2009.
- [23] D. Andreatta, "A Report on Some Experiments with the Top-Lit Up Draft (TLUD) Stove," *ETHOS 2007 Conference, Kirkland, Washington, January*, 2007, p. 2007.
- [24] Friese-Greene, "Biochar and SCAD," The Schumacher Institute, 2008.
- [25] R. Iliffe, "Is the biochar produced by an Anila stove likely to be a beneficial soil additive?," 2009.
- [26] S.C. Bhattacharya and M.A. Leon, "Prospects for biomass gasifiers for cooking applications in Asia," 2005.