

The Viking Gasifier

Outline

- Biomass Gasification Group at DTU
- Two stage gasification
- Viking gasifier
 - Technologies
 - Hurdles on the way
- •Results from April 2003
- Conclusions

Biomass Gasification Group

- Thermal conversion of biomass
- •15 years of experience
- •12 Employees
- Externally financed

Two-stage gasification

Separated pyrolysis and gasification

Partial oxidation of pyrolysis gases

> → No tar in gas nor in waste

→ High efficiency

Biomass Gasification Group, DTU

www.bgg.mek.dtu.dk

Viking gasifier at DTU

Commisioned August 2002

Small scale (75 kW_{fuel})

Unattended operation

Engine woodgas operation for > 1100 hours

Waste: only ash, carbon dust and water

Key data April 2003

•Thermal input 68 kW

•Fuel: wood chips

•Moisture content 35-45 %

•Gasifier efficiency 93%

•Engine efficiency 32%

•Electric efficiency 27%

•Overall electric eff. 25%

•Tar level <5mg/Nm³

•Dust level <5mg/Nm³

Materials

•Partial oxidation zone: Brick lining

•Metal 700-1100C: MA-253 high temp. steel

•Metal <700C: Stainless steel

Baghouse filter: Polyethylene

Bag house filter system

- Particle removal just above water dew point.
- Filter cleaning by N₂ back flush.
 - → Bulk particles and condensate recovered separately.
 - → Pressure drop <100 mmWG
 - → Low energy consumption

Gas cleaning performance

operation without permanent increase of the pressure drop

.Dust after filter <5 mg/Nm³

.Residual tar condenses on particles, removed with these

→ Tar level in gas drops from 25 to "no tar" (<5 mg/Nm³)</p>

Police filter after 1200 hours

www.bgg.mek.dtu.dk

Viking condensate quality

Amounts: 2-6 l/h

 NH_3 : 1 g/l

Naphtalene: <20 μg/l

Other PAH: $<2 \mu g/1$

Smell: NH₃

⇒ OK for standard biological surridge plant!

Viking dust quality from bag house filter

Amounts: 100-600 mg/Nm³

=5-30 g/h

Ash: Approx. 50%

Tar: <5% mass

→Low temperature reburning in boiler should be possible.

Ash from gasifier

- Unconverted carbon in ash from gasifier: ≈ 30 %
- Total unconverted carbon:
 - 0.1 wt.% of fuel
 - 0.3 % of energy in fuel

Intake manifold of the engine after 1100 hours on Wood Gas

Experiences

- No problems with brick lining
- •Minor deposits of salts and carbonates in the hot gas system
- No corrosion of hot metal parts
- No deposits or corrosion in clean gas system and engine
- •Shutdown corrosion in the system with cold uncleaned gas

Ash removal failed

- Ash removal failed
- -> Totally new design

- Ash removal failed
- -> Totally new design
- Condensation in ash
- -> Heat tracing

- Ash removal failed
- -> Totally new design
- Condensation in ash
- -> Heat tracing
- Ceramics failed/smelted
- -> New reactor top using brick lining

- Ash removal failed
- -> Totally new design
- Condensation in ash
- -> Heat tracing
- Ceramics failed/smelted
- -> New reactor using bricks

Minor hurdles

- Valves stuck during idle periods
- Fuel feed blockages
- Engine ignition system

Results during April 2003

Operation:

- Gasifier
 380 hours April
 (>1300 hours total)
- Engine
 346 hours
 (>1100 hours total)

Average dry gas composition		
H_2	30.5	%
СО	19.6	%
CH ₄	1.2	%
CO_2	15.4	%
N_2	33.3	%
LHV	5.6	MJ/N m ³
HHV	6.2	MJ/N m ³
Gas flow	37.1	m ³ /h
(dry. 0°C)		

Gas temperatures in char bed

Biomass Gasification Group, DTU

www.bgg.mek.dtu.dk

Conclusions

- Fully automatic unattended operation
- 1300 hours of operation
- 25 % efficiency from biomass to electricity to the grid.
- No tar in the gas
- Good engine performance no deposits in engine
- Condensate not a waste problem
- Dust can be treated separately
- Absence of tars ⇒ simple, cheap gas cleaning system.

Questions?

Biomass Gasification Group, DTU

www.bgg.mek.dtu.dk